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SUMMARY 

Extensive measurements were made of micrometeorological and 

microphysical characteristics of eleven fogs in the Chemung River Valley 

near Elmira, New York. Temperature was measured at five levels between 

0 and 17 m, dew point at three levels, and wind speed and direction at two 

levels. Net radiative flux and vertical wind velocity were measured at 17 m. 

Visibility was observed at three locations at a height of four feet, and dew 

deposition was measured at the surface. Observations began in late evening 

and continued until the time of fog dissipation. After fog formed, drop 

samples were collected.for size distribution analysis and liquid water content 

was measured at 15-minute intervals or less. The vertical distribution of 

temperature from 0 to 300 m and cloud nucleus concentrations were measured 

from an aircraft at three-hour intervals before fog formation. Temperature 

measurements and drop sample collections were made in fog at altitudes 

above 60 m. 

Remarkably consistent patterns of temperature, dew point, and dew 

deposition behavior with time relative to fog formation were observed from 

six hours before fog formed to fog dissipation. Radiative cooling of the 

surface stimulated dew deposition and formation of temperature and dew 

point inversions. After midnight, maximum cooling occurred at a level equal 

to about two-thirds the eventual fog depth, apparently as a result of nocturnal 

valley circulations. When the low level atmosphere became about isothermal, 

fog formed aloft and’grew downward under the influence of an instability caused 

by radia’tion from the fog top. Surface warming began when net radiation from 

the surface was reduced by fog aloft. When fog was fully developed, the 

temperature profile was approximately wet adiabatic in the lowest two-thirds 

of the fog and inverted at higher levels. After sunrise, fog temperature 

increased uniformly. 

Dew deposition rate was uniform before fog formation and decreased 

to near zero between fog formation and sunrise. Evaporation of dew began 

at sunrise and continued until fog dissipation. The evaporation rate was 

sufficient to maintain saturation for approximately 2.5 hours within the fog 

as post sunrise temperatures increased. AS the heating rate increased, 

evaporation was insuffxcient and the fog lifted. 

vii 



As long as ambient wind speeds were low, the mountain wind controlled 

flow in the valley. Directional shear of 45-90° occurred frequently and 

150 to 180° shear was occasionally observed between valley and hilltop winds. 

Bursts of vertical air motions, both up and down, occurred throughout the 

pre-fog period. Occasionally, persistent up- or downdrafts occurred for 

intervals of several minutes-. Up and down motions of ‘short duration occurred 

continuously after fog formation with typical velocities of 0. 5 to 1 m set -1 

and occasionally as large as 2 m set -1 . 

The microphysical properties of fog change in a manner that is almost 

as consistent as the micrometeorological properties. Shallow ground fog 

usually occurs prior to the formation of deep valley fog. The ground fog 

consists of 100 to 200 droplets cm -3 distributed between 1 and 8 pm radius, 

with a mode at 3 to 4 pm. As deep fog begins to form, the drop concentration 

decreases to less than 5 cm -3 and the mode increases to 6 to 10 pm radius. 

Droplets smaller than 3 to 4 pm radius disappear completely. Total droplet 

concentration then increases slowly to a maximum at the first visibility 

minimum at which time small droplets reappear. Thereafter, the distribution 

contains droplets between 1 and 30 pm radius with a mode between 6 and 

12 pm. In about half of the fogs, a second mode, at 3 or 4 pm also exists. It 

appears that the initial visibility degradation at the surface occurs as a result 

of droplets being physically transported downward from the fog aloft and that 

new droplets are not generated in the very low levels until the first visibility 

minimum. 

A numerical model was developed to investigate the life cycle of fogs 

which result both from the nocturnal cooling of the earth’s surface by infrared 

radiation and from various vertical transfer processes. In the model, the 

atmospheric exchange coefficients are functions of friction velocity, height, 

and the predicted local thermal stability. After the earth’s surface is cooled to 

the dew point, dew is allowed to form and water vapor is brought down to the 

surface by turbulent transfer. Upon fog formation, the influences of infrared 

absorption and radiation by fog, and fog drop sedimentation are included. The 

model has a one-dimensional vertical grid system which extends from one 

meter below the earth’s surface to approximately one kilometer above the 
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surface. In the atmosphere, the model predicts the temporal evolution of the 

vertical distributions of temperature, water vapor, and liquid water as deter- 

mined by radiative and turbulent transfer of heat, and turbulent transfer of 

moisture. 

Because the temperature and dew point profiles decreased simultaneously 

during a simulation, the model behavior was quite sensitive to the overall level 

of turbulent transfer as controlled by the friction velocity. The mode 1 formed 

radiation fog with tops in the 10-40 m range but could not duplicate all the 

observed characteristics of the Elmira valley fog in a single simulation. 

This result suggests that two- or three-dimensional processes, e. g., valley 

circulations, may significantly influence the formation and properties of the 

Elmira valley fogs. The liquid water content of the deeper fogs generated was 

in the 300-500 mg/m3 range, 3 which is larger than the 150 mg/m frequently 

observed in natural fogs. This discrepancy between observations and model 

results appears to lie in the inability of the model to predict deep fogs with 

realistic initial dew point spreads. The present model was able to reproduce 

a characteristic feature which occurs after fog forms, i.e., a rise of surface 

temperature and conversion of the low level temperature profile from inversion 

to lapse conditions. In the model, this behavior occurred when downward radi- 

ation emanating from the fog significantly reduced the net radiation from the 

earth’s surface. 
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CHAPTER I 

INTRODUCTION 

During the summers of 1968 and 1969, Co.rnell Aeronautical Laboratory, Inc. 

AL), under the sponsorship of the Aeronautical Vehicle Division of NASA, 

erformed extensive valley fog seeding tests near Elmira, New York. 

The seeding concept developed at CAL is one in which visibility is improved 

by introduc.ing sized hygroscopic materials into the fog. The nuclei, upon 

entering the fog, cause a favorable redistribution of dr.oplet size which 

often results in substantial visibility improvements. In approximately half 

‘of the airborne seeding experiments that were performed some visibility 

tmprovement was -measured. These successful experiments were concen- 

2rated in the second half of the fog life cycle. Experiments performed 

shortly after fog formation were not successful. Similar relationships 

yere observed in experiments performed by the Air Force ,Cambridge 

esearch Laboratory and Meteorology Research, Inc., in Lakeport and 

he Noyo River Valley, California. 

n the character of fog that might be responsible for the observed differences 

/ 

A review of the literature provided no explanation for the changes 

seeding effectiveness . It was apparent that our lack of understanding of 

he temporal variations of the physical and dynamic characteristics of fog 

as beginning to limit progress in the development of fog dissipation 

rocedures. To provide some of the needed information, therefore, the 

970 field program was designed to gather information on the entire fog 

life cycle. The field program was to be followed by an effort to formulate 

a dynamic model of valley fog. The goal was to set initial boundary con- 

$ 
itions and input parameters in the computer model according to measure- 

ments obtained in the field and let the computer reproduce the variations 

J ‘n fog characteristics that were observed through the natural life cycle. 

In addition to these investigations of the properties of natural fog, 

series of laboratory experiments were performed to complete the investi- 

of the possibility of inhibiting fog formation through the use of 

inhibitors and to begin to study the effects of some common 

pollutants on the characteristics of fog and on the seedability of fog. 

ests were also initiated to examine the photochemical production of 

These experiments were conducted in anticipation of 
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our current study of coastai fogs at Vandenberg, California and in the 

Los Angeles Basin. Results of the laboratory tests are presented under 

separate cover. 

Chapters II and III in this report cover the results of the field pro- 

gram. Results obtained from the numerical modeling effort are presented 

in Chapter IV. 



CHAPTER II 

FIELD INVESTIGATIONS 

Field investigations were performed at the Chemung County Airport 

near Elmira, New York from 5 August through 15 September 1970. The 

general characteristics of the valley are illustrated in Figure 1, and 

locations of our instrumentation on the airport are shown in Figure 2. 

Transmissometers were located at the localizer, the tower site, and the 

glide slope. All other instrumentation listed in Table I was located at the 

tower site or on the Piper Aztec used for airborne observations. 

Automatic instrumentation was usually turned on between 2100 

and 0100 on the nights preceding the predicted fog formation. Manual 

observations were usually made at half-hour intervals from that time 

until fog dissipation and occa’sionally at much shorter intervals (as 

small as 30 seconds) when a particular characteristic of the atmosphere was 

being investigated in detail. Normally, aircraft observations were made at 

three-hour intervals from midnight until fog formation. After fog forma- 

tion, regular aircraft observations were suspended for safety reasons 

until after daybreak. Shortly after sunrise, aircraft data were acquired 

from the surface to several thousand feet on takeoff through the fog and at 

approximately 45-minute intervals thereafter on ILS approaches to 60 m. 

Measurements were made on 19 occasions when the probability of 

fog formation was estimated to be 50% or greater. Fog formed on 12 of 

these occasions and on two days for which the probability had been estimated 

at less than 50%. On five of the seven nights for which fog was forecast 

(probability > 50%) but did not form, thin clouds drifted over the valley and 

inhibited surface cooling. On the other two nights, fog formed in other 

parts of the valley but not at the airport. 

The data presented in this report are based on eleven of the twelve 

fogs sampled, Calibration of all equipment was not completed until 

12 August 1970 so that only portions of the data pertaining to the fogs of 

8 and 11 August are included in the summaries. 

3 



SURFACE 

THREE TRANSMISSOMETERS (CAL) 

DROP SAMPLER (CAL-GELATIN) 

LIQUID WATER CONTENT (GELMAN) 

DROP CONCENTRATION (CAL) l 

TEMPERATURE (SURFACE AND. IO cm) 

DEW WEIGHT (CAL) 

HAZE NUCLEI (CAL) 

TOWER 

TEMPERATURE - 1 m, 3 m, 17 m 
DEW POINT - 1 m, 3 m, 17 m 
WIND SPEED & DIRECTION, 3 m, 17 m 

VERTICAL WIND SPEED, 17 m 
NET RADIATION, ?7 m 

AZTEC 

CLOUD CONDENSATION NUCLEI (CAL) 

TEMPERATURE (REVERSE FLOW) 

DEW POINT (CAMB. INST.) 
DROP’SAMPLER (CAL) 

Table I 

INSTRUMENTATION 

(FOXBORO) 

(FOXBORO) 
(BEC & WHIT) 

(GILL) 
(APCL) 

RECORDING 
INTERVAL - 

CONTINOUS 

15 MIN 

30 MIN 
15 MIN 

30 MIN 

30 MIN 

3 HR 

CONTINUOUS 
CONTINUOUS 

CONTINUOUS 

CoNTlNUOUS 
30 MIN 

3 HR 
CONTINUOUS 

CONTINUOUS 
100 FT VERT. --. 

T 
I 

DATA QUALITY 

GOOD 

X 

X 

X 

XI 

X 

X 
X 

X 

X 

X 

FAIR 

X 

X 

X 

X 

POOR 

X 

X 

-.?- -_ 

*TWO METHODS WERE USED. 
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Figure 1 TOPOGRAPHY NEAR THE ELMIRA FIELD SITE 



JJ 
-Figure 2 SCHEMATIC OF CHEMUNG COUNTY AIRPORT SHOWING INSTRUMENTATION SITES 



Of the twelve fogs for which data were acquired, eight formed 

within the two hours preceding sunrise, three formed within the half hour 

after s&rise and one (14 August 1970) formed at 0015 EDT, an anomaly 

caused by the saturation of the valley air after an early evening thunderstorm. 

In the presentation of the data throughout this report, the two fogs of 

22 August and 12 September are used as examples of typical persistent, 

dense fogs that form prior to sunrise. Data from 2 September 1970 are 

used to illustrate characteristics of fogs that form after sunrise. Other 

examples are sometimes presented to illustrate specific features of a given 

fog that do not fit the general patterns. 

It should be recognized that all data were acquired,in one valley and 

that attempts should be made to verify the findings at other locations. 

VISUAL OBSERVATIONS AND VISIBILITY DATA 

l Surface Observations 

_ Visibility data were acquired from CAL-designed transmissometers 

located at three sites on the airport as indicated in Figure 2. The trans- 

missometers were operated over 100 ft path lengths at a height of 4 ft above 

the surface. Each instrument was adjusted in situ to provide a measured 

transmitter beam width of less than 1’ . Receiver beam width was 

adjusted in the laboratory to be less than 1 o . Maximum overall error 
in the measurement of received light intensity was estimated to be *50/o, 

with the greatest limitation being imposed by the accuracy of the recorder 

(*I% full scale) at the lowest visibilities. This error is negligible in the 

low visibility region; e. g., at 1000 ft visibility, an error of *50/o in the 

measurement of received light produces an error of only k100 ft in 

visibility. To minimize error due to drift in the transmissometers, a 

calibrate-signal was generated with a prism inserted into the transmitted 

beam to reflect a fixed fraction of the transmitted light into a second photo- 

tube mounted in the transmitter. The calibrate-phototube was operated 

from the same power supply as the receiver and its output was passed 

through the receiver electronics. Calibrate+ignals were, recorded for 

20-second intervals every three minutes. 
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Continuously recorded transmissometer data were converted to 

meteorological visibility V in the standard manner. That is, 

I = IOeBpX (1) 

v = 3.912 
P 

(2) 

where I and I are observed light intensities at the receiver after trans- 0 
mission through the turbid and clear media respectively, x is the trans- 

mission path length (100 ft in this case) and p is the extinction coefficient. 

Conversions were made at discrete times determined by changes in trans- 

mission characteristics or to coincide with the acquisition of drop samples. 

Visibility data acquired during the three fogs used for illustrative 

purposes throughout this report (22 August,and 2 and 12 September 1970) are 

shown in Figures 3, 4, and 5, The data in Figures 3 and 4 are characteristic 

of persistent, dense fogs in Elmira and the data in Figure 5 are typical of 

fogs that formed shortly after sunrise. ,Figure 6, which shows data acquired 

on 13 August 1970, illustrates typical visibility fluctuations associated with 

patchy fog. Figure 7 illustrates the one case (26 August 1970) in which fog 

was persistent at two of the instrumented sites and patchy at the third. 

Several features of the illustrative curves require explanation. 

The continuous curves show meteorological visibility obtained from trans- 

missometer data. The x’s show visual range as determined by an observer 

either by pacing off the appropriate distance or measuring it. with an 

automobile odometer . The disagreement after daybreak is due to airlight 

and illustrates why daytime and nighttime scales are different on RVR 

equipment . 

With the 100 ft baseline, the least count of the transmissometers was 

such that visibility in excess of about ,13,000 ft was not distinguishable from 

infinity. The dashed portions of the curves simply indicate that visibility 

exceeded that value. Visual observations made during this period indicate 

that haze usually formed in late evening and limited visibility to about three 

8 
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miles around midnight. From that time until fog formation, haze density 

increased very slowly. Frequently during this period, patches of shallow 

ground fog (GF), ranging in depth from about 1 cm to 3 m, formed over the 

airport. Occasionally, as many as three layers, each about 1 m thick, 

which were separated by 1 to 2 m of clear air, were observed to extend as 

high as 10 m. 

Shallow ground fog frequently formed in the vicinity of the tower 

site. Deeper ground fog, i.e., 1 m, was frequently observed to drift very 

slowly to the warm, dry runways surrounding the tower site and dissipate. 

Only infrequently, such as at 0400 EDT on 22 August 1970, was the ground 

fog deep enough to affect the transmissometer near the tower. The tranmissometer 

operated at the localizer site was in a slight depression and affected by 

ground fog approximately one-third of the time after midnight on many 

nights . The glide slope transmissometer, located on a slight mound, was 

never affected by the ground fog even though thin layers were frequently 

noted at that site. 

Between an hour and a few minutes before fog formation, 

appearance of the haze, as observed in the beam of the airport tower beacon, 

changed from a continuous haze to streamers of dense haze or perhaps fog 

separated by clear regions. Shortly thereafter, the moon and stars became 

obscured as fog formed aloft. 

On seven of the nine occasions for which written notes are available, 

fog was first observed aloft. On six of these occasions, the beacon on top of the 

tower (2000 ft away) was obscured while the base of the terminal building 

was clearly visible. On one occasion, when fog formed after daybreak 

(2 September 1970), fog was clearly observed to form aloft in a thin layer 

over most of the valley and “grow” downward. On one occasion (14 August 1970), 

a ltwalll’ of fog advected in from the west and on one occasion when fog formed 

after daybreak, the visibility degradation appeared to occur at all levels 

simultaneously. 
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Throughout the period when fog was forming aloft, surface visibility 

remained greater than two miles. As indicated in the five illustrations, the 

decrease in surface visibility from 13,000 ft to less than half mile usually 

required less than five minutes. From that time visibility degraded more 

slowly with an average of 27 minutes (11 fogs) required betiveen the initial 

observable decrease and the first minimum. 

In general, the visibility behavior between the first minimum and fog 

dissipation followed one of two patterns and was essentially the same at the 

three transmissometers. Dense fogs, minimum visibility from 600 to 

1200 ft, were quite persistent, with an average duration of four hours, and 

only minor fluctuations in visibility. Moderate fogs, including all fogs that 

formed after sunrise were characterized by minimum visibility exceeding 

1200 ft and large visibility changes that occurred at intervals of one half 

to one hour. Average duration of the moderate fogs was approximately 

2.5 hours. 

Several attempts were made to discern more specific behavioral 

patterns of visibility but in most cases without success. There appears to 

be a fairly consistent, usually slight increase in visibility that occurs 

between one half and one hour after the first minimum. The only effect 

associated with sunrise is due to the change in illumination and not in the 

extinction coefficient. After the first minimum, there is no consistent 

variation of surface visibility with real time. Efforts to construct a model 

of visibility based on the physical properties of the fog therefore proved 

futile. 

l Fog Top Altitude 

The height of the fog top was determined visually using the altimeter 

on the Aztec during IFR approaches and wave-offs that were made after day- 

break. From agreement of recorded altitude at times of takeoff and landing 

and from discussions with our pilots, we believe that measured altitudes 

are accurate to f 10 m. In many cases, however, small-scale variations 

in fog top height with distance exceeded this value. The recorded data 

represent what the observer judged to be average in the vicinity of the 

penetration. 
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Data for the three illustrative fogs plus the fog of 11 August 1970 are 

presented in Figure 8. The latter case is presented because it includes 

the one measurement made before fog formation at the surface. It also 

contains one of the two measurements of fog top altitude that were made 

very nearly at the time of surface fog formation. 

It is immediately apparent from Figure 8 that the fog top heights 

measured on the descent penetrations one to two miles east of the airport 

are consistently higher than those measured on the ascent penetrations one 

to two miles west of the airport. This altitude difference has been con- 

firmed by flying at fog top height over the region. As shown in the average 

of all data, presented in Figure 9, the altitude difference averages slightly 

over 30 meters (100 ft) throughout the fog life cycle. The change in 

altitude is well correlated with the average increase of surface elevation 

of the base of the valley shown in Figure 1. It also appears that fog 

“piles up” at the east end of the valley before turning south with the 

drainage wind. 

It is apparent in Figures 8c and 8d that the fog occasionally increases 

in height during the early portion of its life cycle. While this, effect appears 

in the averages, the number of cases available for the first and fourth 

hour of the life cycle is not sufficient for drawing firm conclusions. 

(The limitation of in-fog flight to daylight hours Limited early sampling 

and the paucity of long fogs limited sampling in the fourth hour. ) In 

general, the fog top altitude remained approximately constant for the last 

hour or two before dissipation regardless of fog duration. 

For the first hour or two after sunrise, the fog top had a smooth, 

gently rolling appearance similar to “mother of pearl”. This texture changed 

to that characteristic of the tops of stratocumulus clouds as the fog aged. 

MICROMETEOROLOGICAL DATA 

l Low Level Temperature Data 

Low level (0.0 to 17 m) temperature data were acquired on 2 1 fog 

days during the 1970 field operation in Elmira. The data consisted of: 
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1. Continuous recordings of temperature at the 1 m, 3 m, and 

- 17 m levels using the Foxboro system. 
* 

2. Manual observations at half-hour intervals using secondary 

standard mercury thermometers at the ground level (therm0me’te.r pressed 

onto matted grass) and at the 0.1 m’ level. 

On several occasions during the six-week field program, the 

‘Foxboro system was calibrated against the secondary standard thermometers. 

The calibrations were performed in fog and on cloudy days by temporarily 

mounting the secondary standards at each resistance probe level and-corn-’ 

paring manually observed temperature with the strip chart recordings. 

After appropriate fixed corrections were applied to the records, agreement 

was within 0. 2OC absolute and within 0.1OC (relative) for a single resistance 

probe over periods of hours. Although intercomparisons of the secondary 

standards were always consistent to within 0. 1OC, the proximity of the 

observer caused indicated temperature at the 0.1 m level to increase at a 

rate of a few tenths of a degree per minute whenever near calm winds 

existed. With the care taken in the field, we believe that errors due to 

this effect were limited to 0. 2OC. In general, therefore, ..we estimate that 

all relative temperatures are good to 410.2OC on a given day. 

Temperatures were taken from the strip charts at half-hour intervals 

from the time observations began (usually between 2000 and 2300 EDT on 

night preceding the fog) and plotted with the surface and 0.1 m data against 

time. Typical data are presented in Figures 10 and 11 (22 August 1970 and 

12 September 1970) for persistent fog and Figure 12 (2 September 1970) for 

fog that formed after sunrise. Several pertinent and consistent features 

may be noted from these curves. 

In general, the low level inversion formed shortly after sunset and 

persisted with minor fluctuations in intensity (associated mainly with wind 

fluctuations) until the fog formed. With the exception of 2 September 1970, 

12 September 1970, and very briefly on 26 August 1970, the inversion was 

*Dyatherm Resistance Bulb Model DB-2iB-226W and Recorder Model ERB. 
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most intense in the lowest 0.1 m and decreased in intensity to the 27 m 

level. The exceptions are illustrations of the “raised minimum” (Geiger, 

1965, Chapter II) in temperature which often occurs on calm evenings. 

Typically, between one hour and one-half hour before fog formation, 

the surface and 0.1 m temperatures began increasing rapidly. About 

one-half hour before fog formation, the 1 and 3 m temperatures began 

increasing and, on occasion, the 17 m temperature began decreasing 

slightly. At the time of fog formation, the low level inversion broke and a 

superadiabatic temperature lapse rate formed below 17 m. Between the 

time of fog formation and sunrise, low level temperatures remained 

approximately constant. Within a half hour after sunrise, the surface 

temperature began increasing rapidly and, with time lags that increased 

with height, all low level temperatures followed the same pattern. The 

post-sunrise surface heating occurred even with fog depths exceeding 150 m. 

In the pre-fog period, temperature fluctuations of two to four degrees 

within a half-hour interval often occurred at the surface and 0.1 m levels. 

At times, these fluctuations were also noted at tower levels as illustrated 

in Figure 10 at 2200 EDTand 0030 EDT. These fluctuations were occasionally 

associated with wind speed fluctuations but most often were not explained. 

Because of the consistency of the low-level temperature behavior 

on fog nights, a meaningful description of this behavior can be made in terms 

of averages and departures from the averages. Since the major change in 

vertical temperature distribution occurred at the time of fog formation, the 

initial averages were computed for times relative to the time of fog forma- 

tion. Because a secondary change in behavior also occurred at sunrise and 

actual fog formation time ranged from ten minutes after to more than five 

hours before sunrise, this procedure masked the sunrise effect. We 

decided, therefore, to include average time of fog formation, 0530 EDT, 

in the model fog. Averages were computed from six hours before actual 

fog formation to one hour after fog formation, and these half-hour averages 

were arbitrarily assigned times relative to a 0530 EDT fog formation. To 

account for the post-sunrise effect, differences between the respective 
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0630 EDT observed temperatures on each, day and observed temperatur.es at 

subsequent. times were averaged. These data were used to shape the 

temperature vs time curves after sunrise (.sunrise occurred at 0630 EDT 

*8 minutes throughout the field program),. The curves obtained for the ffrst 

seven-hour interval were then extrapolated according to these shapes to 

0930 EDT. Results of this analy.sis are displayed in.Figure 13. 

These curves were obtained from data on eight of the eleven fogs 

sampled. The fog of 14 August 1970 was eliminated because it was ‘atypical 

in other respects,and complete temperature data were not available for 

24 August 1970. Data from the fog of 12 September 1970 were not included 

initially because the averaging was completed before that fog occurred. 

Rather than make minor changes in the average values, it was decided to use 

that case as an illustration of how accurately the averages describe, temperature 

variations associated with early morning fog at Elmira. 

The accuracy with which the model fog temperatures portray 

actual fog temperatures relative to the time of fog formation is illustrated 

quantitatively in Table II, which shows the extremes of deviation of observed 

temperatures from model temperatures as a function of time during the 

eight fogs. 

Table II 

Extremes of Dc~istibn of Observed 

Temperature Relative to Average ?‘enlI)C.raturc 

Time (hours) -5 -4 -2’ -1 0 +I 

Height 

Zero 2.5OC 2.7Oc 1.8oC 2.5 1.2Oc 1.5Oc 

0.1 m 2.4 2.5 2.3 2.2 i.2 0..5 

Im i.6 0.8 0.4 0.7 0 0.3 

3m 1.4 0.8 0.4 0.7 0.3 0.3 

17 m 1.2 0.7 0.4 0.6 o 0.5 
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To complete the discussion of the consistency of the model temperatures 

with actual temperatures, it is important to note ‘that the I m-17 m 

temperature crossover occurred, on the average for these eight fogs, 

eight minutes after the first Feasurable visibility decrease and 9.3 minutes 

before the first visibility minimum. If all fogs are included, these averages 

increase to 12.and 13.5 mimitea, respectively. 

So far, the discussion of low-level temperature data has been con- 

fined to data obtained at the tower site in the valley. Late in the field pro- 

gram, when we began to suspect that horizontal heat transfer from the 

center valley region to the hills may be responsible for the initial fog 

formation aloft, a few measurements were made of low-level temperature 

on the hillsides and hilltops adjacent to the valley. These measurements 

were made with laboratory grade mercury thermometers that were semi- 

permanently installed in convenient locations at the two sites indicated by 

the symbol @ on Figure 1. The hillside site was a cleared meadow with 

one-third meter high grass and occasional 1.5 m high brush. Since the 

hillsides are, in general, covered with a closed forest canopy roughly 10 m 

above the surface, we are not certain that the hillside data are representative. 

The hilltop site, a cleared field covered with 10 cm high winter wheat, was 

representative of most of the hills in the vicinity. Mea,surements were made 

with the thermometers taped to the grass at the surface &d suspended 

between 1 and 1.5 m in the air. In addition, the temperature of the highest 

vegetation was measured on the hillside by wrapping the thermometer in 

living leaves at the 1.5 m level. The thermometers were calibrated to the 

nearest half degree. 

The data obtained at these sites on 12 September 1970 and 

2 September 1970 are presented in Figures 11 and 12, respectively. These 

are the only data obtained on fog nights; and because of infrequency of 

measurements, no detailed conclusions can be drawn. In general, it 

appears that the low-level temperatures at both sites on the hill behave in 

a manner similar to that noted in the center valley region. Perhaps most 

important is the fact that in all cases, surface and vegetation temperatures 

on the hill were significantly lower than air temperatures obtained at low 

levels at the valley floor. Air temperatures at .both hillsites were either 

equal to or colder than low-level temperatures in the valley. 
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A number of pertinent characteristics.of the model temperatures 

should be noted, and some conclusions may be drawn. 

1. The average rate of temperature decrease, 0.6OC/hr, is con- 

stant from zero to 17 m from -6 hours to - 1 hour (relative to the time 

of fog formation). 

2. At some time, varying from one-half to one hour before fog 

formation, the temperatures at the surface and 0.1 m begin to increase. 

This temperature’increase is associated with the decrease of net 
radiative heat transfer from the surface due to the formation of fog aloft. 

Similar measurements of low-level warming that accompanies the advent 

of clouds or fogs were made as early as 1838 (Wells, 1838). 

3. The average temperatures of the 1 and 3 m levels begin to increase 

approximately one-half hour before the 1 m-17 m crossover and continue for 

one-half hour thereafter. The average temperature at the 17 m level decreases 

during the half hour prior to the crossover and is essentially constant from that 

time until after sunrise. The source of heat for the 1 m and 3 m temperature 

increases must be the air at higher levels during the initial half:hour period. 

During the last eight minutes of this period, the heat of condensation 

may contribute to this warming, but calculations based on observed 

liquid water content at the end of the period indicate that these contributions 

account for only 0.1OC or approximately 20% of the total change. 

There appears to be no logical explanation for the observed tempera- 

ture variations at the 1 m level after the 1 m-17 m temperature crossover. 

In particular, we do not understand what can cause the 1 m temperature to 

remain warmer than the air above and below that level. It is probable that 

this observed temperature difference is simply a manifestation of the 0.2OC 

accuracy of the measurements. 

4. The temperature distribution in the lowest 17 m between fog 

formation and sunrise is superadiabatic.and almost constant. In some 

cases, such as on 14 August 1970 (Figure 14) when fog formed long before 

sunrise, a slight temperature decrease of 0.1 to -0.2OC per hour was 
L 

observable throughout the entire layer. This, we believe, is due to radiation 

from the fog top with heat being transferred upward from the surface. 
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5. The surface temperature rises at an increasing rate after sun- 

rise and, as mentioned earlier, all low- level temperatures follow with 

time lags that increase with height. During this time, heat is being trans- 

ferred from the ground to the air. 

6. Low-level.temperatures on the hillsides and at the hilltops behave 

in a manner similar to that observed in the center valley region. Surface 

temperatures at the hillsides and hilltops are colder than low-level air 

temperatures in the center valley region. 

l Temperature Aloft 

Temperature measurements at levels above 17 m were made from t 
the CAL Aztec using a thermocouple mounted in a reverse-flow housing. 

These data and simultaneous data on pressure-altitude and indicated air 
* 

speed were recorded digitally at 0.4 second intervals. The raw data were 

processed in the IBM 360/65 computer to correct for dynamic heating and 

provide readouts of five-second averages at each altitude. The least count 

of the altimeter was approximately 10 m. Depending on rate of climb, 

one to three five-second averages were obtained over each altitude increment. 

The reverse-flow housing was constructed according to the 

Pennsylvania State University design (Hosler et al., 1966). Dynamic heating 

corrections were applied in accordance with the wind tunnel calibration of 

this design described by Kelley and Breon (1967). 

Subsequent to the completion of these experiments, the reverse-flow 

housing installation on the Aztec was calibrated in clear air against a 

Rosemont total temperature probe 
** 

in an attempt to resolve a hysteresis 

effect noted when comparing data acquired on sequential ascent and descent 

soundings at Elmira. This calibration indicated that the reverse-frow probe 

provides correct temperature measurements to within &O. 5OC during 

descent and level flight but revealed an angle of attack problem that produced 

*Metro Data Systems Model D~620 
** 

Model 302 
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absolute errors up to 2OC during ascent operations. Consequently, only data 

obtained during descent were used in the following analysis. 

The data obtained on 22 August 1970 and 2 September 1970, presented 

in Figure 15, are typical of, those obtained throughout the program. Note 

that all post-fog profiles extend to approximately the .60 m level where the 

aircraft took a waveoff because of limited ceiling. Extrapolation of the air- 

craft data to the surface invariably agreed with tower data to within fO.5OC. 

On one occasion, 13 August 1970, visibility within the fog was sufficiently 

good to permit touch-and-go landings and provided an opportunity for direct 

comparison of aircraft and tower temperatures at the same altitude in fog. 

These data (separated for clarity) are presented in Figure 16 in lieu of data 

from 12 September 1970. (The aircraft configuration was altered prior to the 

12 September experiment and temperature data were not recorded.) 

Several pertinent features of these profiles are worth comment. 

Note that in each case, the maximum cooling rate in the last six hours 

before fog formation occurred at an altitude of approximately 100 m. Note 

also that, with the exception of the 0809 profile on 2 September 1970, all post- 

fog profiles show unstable temperature distributions at low levels changing 

to neutral and then stable distributions in the upper levels of the fog. In the 

exception noted, the fog top was at 50 m, the height of the lowest data point 

in the aircraft profile. In each of the cases shown, the steepest part of the 

inversion is slightly above the level of the fog top. 

Because of the relatively few profiles obtained on most fog nights, 

we did not attempt to plot time histories of temperature with height on a 

nightly basis. Instead, in view of the excellent reproducibility of tempera- 

ture vs time data obtained at low levels, we combined data from all fogs 

to extend the temperature model upward. The results are presented in 

Figures 17 and 18, with the dates of observation used as the symbols for 

each data point. As with the low-level temperature data, the pre-sunrise 

data are normalized to the time and temperature of the 1 and 17 m tempera- 

ture crossover. Post-sunrise data are plotted in real time. 
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It is apparent from Figure i7- that the consistent temperature behavior 

noted in the low-leveLdata persists to at least the 60 m altitude. No data ^. 
point differs from the best mean fit by mor,e than 1. 5OC. Substantially 

greater spreads are evident in the data for 90 and 120 m shown in Figure 18. 

l%ere, the data are split into two groups, with normalized temperatures 

for 11, 13,: and 22 August averaging more than a degree colder than those 

of other dates ; Examination of other data shows that the temperature group- 

ing is consistent with a grouping of the data in accordance with fog height. 

With the exception of a single observation in one fog, the maximum height . 
of the fog on each of the circled dates in Figure 18, representing the warmer 

group, was less than 120 m while the maximum height of the fog on each of 

the uncircled dates, the colder group, exceed 150 m. Apparently, the 

maximum pre-fog cooling rate occurs at a level which is slightly below 

(about one-third of the eventual fog’ depth) the eventual fog top, and from 

the convergence of the data, the atmosphere beneath that level is very 

nearly isothermal at the time of fog formation. 

Attempts to perform this kind of analysis for altitudes above 150 m 

were fruitless because of the wide scatter in the data. In the belief that this 

scatter may be associated with the wide distribution of height of the fog top, 

we examined the temperature distribution about the fog top. Results are 

presented in Figure 19. It is apparent that the distributions are all reversed 

“S” shaped with the point of inflection within 15 m of the fog top. For a 

given fog, the steepness of the inversion remains approximately constant with 

time, but there is significant variability from fog to fog. The average strength 

of the inversion at fog top is approximately 2. 5OC per 100 m. 

l Summary of Temperature Data 

The results of these various analyses of temperature distribution 

with time are summarized in the family of temperature profiles presented 

in Figures 20 and 21. The curves shown in Figure 20 were obtained by 

replotting points taken from the curves in Figures 11, 27, and 18. In 

Figure 21, the data for lower levels were obtained from Figures 11, 17, 

and 18, and the data for upper levels were obtained by averaging the data at 

each height in Figure 19 and faired into the lower curves. 

35 

L 



; .-----mm i -_-mm- + -e---e $ m-e--_- 

I 
: 

:-------:-------*-------+-----------------~------~ 
I 

, 
I 

1 
I I I 

I 

! I 

: 

I 

: : 

: : : 

I 
I 

I I 
I 

, I I I 

i 1 : , I 
+90~------:-------t-------:-------~-------~--- 

I IO 
i ~&~~~; ------- j --__--- / 

- Y 
+a I------1 

“I LL 
8125 

I I 1 I 8 I 6126 

8 
I i 6 

: : 
I 

I I I 
I I 

I. 
I I I 

I I I 
+a ;------i------:‘------;t-----:--;------- _-___- _-____; - 

I 
1 : 

I 
I 

: -----(. 

I i I 
i 

t 

I 

i 

I 

: 
, I 6 L , I I 

I I 

: i i 
: 

: 
: 

: 

---:----*t-------i-------: 
I I I 

: i 

6 
I 4 

! 

-4 -3 -2 -1 0 +1 +2 +3 +4 

TEMPERATURE RELATIVETOTEMPERATUREOF FOGTOP 

Figure 19 VERTICAL DISTRIBUTION OF TEMPERATURE RELATIVE TO 
TEMPERATURE OF FOG TOP 

36 



,&; ! ,i i i & 
------j---.---~-------r---.------------ 

0: ---_ Q$ 
-4 -3 -2 -1 0 +1 +2 +3 t4 +5 +6 

TEMPERATURE RELATIVE To l-17 III CROSSOVER TEMtiERATURE 

Figure 20 MODEL TEMPERATURE PROFILES - PRE-FOP AND FOG FOFjMATlON PERlbDS 



180 

---.-:------+------i--- 
\ASSUi 

-1 0 +1- +2 +3 +4 +5 -1 o +I +2 +3 

TEMPERATURE RELATIVE TO 1-17 m CROSSOVER TEMPERATURE 

Figure 21 MODEL TEMPERATURE PROFILES IN FOG 

Average curve from Figure 19 adjusted in height to correspond 
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obtained from Figures 13, 18 and 19. 
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The important information evident from this presentation is as follows: 

I. The intensity of the pre-fog inversion gradually decreases between 

30 and 9b m altitudes during the last six hours before fog formation. At 

lower levels, the inversion intensity remains about constant until approxi- 

mately one-half hour before fog formation. I 

2. During the last half hour before fog, the low-level inversion 

breaks. At the time of fog formation, the atmosphere is approximately 

isothermal in the lowest two-thirds of the fog depth. The temperature is 

inverted at higher levels. 

3. Within 15 minutes after fog formation, temperature distribution 

in the lowest 17 m becomes superadiabatic; and above that level, it is 

approximately wet adiabatic through the lowest two-thirds of the fog depth. 

An inversion, with maximum intensity slightly above the fog top, exists 

at higher levels. This condition persists without significant change until 

sunrise. Surface warming after sunrise causes the temperature lapse to 

increase at Low levels until fog dissipation. Similar observations of the 

existence of a near wet adiabatic lapse rate in fog have been reported by 

Fleagle et al. (1952) and Heywood (1931). 

4. The rate of temperature increase of the fog after sunrise increases 

from 0.2OC/hr in the first hour, to 0.7 and 1.2OC/hr in the second and 

third hours, respectively. 

Other pertinent conclusions which are more evident in earlier 

presentations are: 

1. The surface and low-level temperatures decrease at a constant 

average rate of 0.6OC/hr until one hour before fog formation. Between 

one,-half and one hour before fog, the surface temperature begins to increase 

rapidly. Shortly thereafter, warming begins in the lowest 3 m of atmos- 

phere but cooling persists at higher altitudes until the atmosphere in the 

center-valley region fs isothermal. 

2. Between the time of fog formation and sunrise, the temperatures 

at the surface and all levels of the fog remain constant or decrease at the 

same very low rate of 0.1 to 0.2OC/hr. 
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3. Surface. heating begins immediately af$er sunrise ,and increases 

with tiine. Low-level temperatures follow with time lags that increase with 

altitude.. Abovs 17 m, the ~temperature of the entire fog increases at the 

same rate. 

4. A substantial horizontal temperature gradient exists between the 

center-valley region and the adjacent hills at the same level. 

l Low Level Dew Point Data 

Dew points were measured at the 4 m, 3 m, and 17 m levels and 

the data recorded continuously using a Foxboro dew point measuring system. 
9 

Before entering discussions of the data validity, it is necessary to illustrate 

certain characteristics of the records that are typical for different times 

in the fog life cycle. These illustrations are presented in Figure 22. 

A consistent pattern of short-period (Z- to IO-minute) fluctuations 

in indicated dew point that is characteristic of all outdoor records is evident 

in the samples shown in Figure 22. The fact that many of the indicated 

fluctuations are correlated on the three separate instruments indicates that 

in many cases at least the fluctuations are real. It is apparent, however, 

that in order to obtain representative values for a given time interval, some 

form of averaging is required. For ease in data reduction, we elected to do 

the averaging over 7. 5-minute intervals by eye. With the care taken in the 

data reduction, we believe that data point& presented in subsequent figures 

represent the true average of recorded data to 310.25~C. 

When the three dew cells are operated simultaneously in our 600 m3 

experimental chamber, the records show none of the fluctuations that are 

characteristic of the field environment. By altering the amount of ventilation 

to the dew cells with a 48-inch fan, short-term fluctuations amounting to 

approximately l/Z°C can be induced. The three dew cells always agree to 

within 0. 25OC when operated sinl. ,aneously in the chamber. In a relative 

sense, therefore, the data presented are quite accurate. 

Model 270+ RG Dynalog Qewcel Element and associated electronics with 
ERB 6 Multipoint Recorder. 
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Figure 22 TRACINGS OF TYPICAL DEW POINT DATA AT DIFFERENT TIMES IN FOG 
LIFE CYCLE (8/21 - 22/70) 



The Foxboro system was factory calibrated about a year before going 

into the field. Attempts to obtain absolute calibrations in the field using wet 

and dry bulb thermometers usually resulted in agreement to within the 

recorded dew point fluctuations that were occurring at the time. Because 

of these fluctuations, and because of the inherent insensitivity of the wet 

and dry bulb method at very high humidities, we suspect that the Foxboro 

system provided the best measurement of humidity available to us in the 

field. Perhaps the best indication of the absolute accuracy of this system 

rests in the observation that the mean difference between indicated 

temperature and indicated dew point at the time of fog formation was 

0.3OC for the eleven cases available. The maximum indicated difference 

was 1. O°C and in all other cases the difference was less than 0.6OC. 

Purely on the basis of internal consistency of the data, it appears that the 

dew points are accurate to -LO. 5OC in an absolute sense and probably better 

in a relative sense. 

Typical dew point data reduced in the manner described above are 

presented in Figures 23, 24, and 25, which correspond to the temperature 

data presented in Figures 10, 11, and 12, respectively. From these data 

sets, it is apparent that there is a gradual decrease in dew point at low 

levels in the first few hours after sunset, but no consistent change of dew 

point with height is evident until near midnight. At about midnight, a rather 

consistent dew point inversion forms and, with the exception of short-term 

fluctuations that appear- to be associated with short-term wind fluctuations 

and surface temperature increases, gradually increases in intensity until 

approximately one-half hour before fog formation. At that time, probably 

because of the sharp increase in surface temperature, the dew points at the 

1 m and 3 m levels begin to increase rapidly. 

As with the temperature inversion, the breakdown of the’dew point 

inversion is complete at the time of the first visibility minimum. From that 

time until sunrise, the dew point fluctuates about a constant value and 

thereafter, until fog dissipation, the dew point increases gradually. As 

evident in Figure 22, the period and magnitude of short-term fluctuations 
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decrease significantly immediately after fog formation. With the gradual 

increase in dew point that follows, these fluctuations also increase and 

achieve maximum magnitude at about the time fog dissipates. 

This typical behavior is summarized in the dew point model presented 

in Figure 26, which was constructed according to the same rules used for 

constructing the low-level temperature model; i. e., averages were computed 

from six hours before actual fog formation to one hour after fog formation 

for each half-hour interval. Thesk averages were arbitrarily assigned 

times relative to a 0530 EDT fog formation. To account for the effect of 

sunrise, the differences between dew point at 0630 and that at each sub- 

sequent time were averaged to obtain the shape of the curves after sunrise. 

The curves obtained for the first seven-hour interval were then extrapolated 

according to these shapes. 

The model indicates that on the average the dew point inversion is 

already established in the lowest 3 m six hours before fog formation but that 

dew points are nearly equal at 3 m and 17 m until three to four hours before 

fog formation. 

The deepening of the dew point inversion from four hours .to one- 

half hour before fog formation appears to be due to a decrease in the rate 

at which the net water vapor is lost at the 17 m level. Throughout the pre-fog 

period (-6 to -1 hours), the rate of decrease in dew point below 3 m is approxi- 
-1 . mately 0.5OC hr , which is slightly less than the rate of temperature change. 

It is readily apparent from the average data that the breakdown of the 

low-level inversion in the last half hour before fog is due to an increase in 

low-level humidity. 

The average data indicate that to within the accuracy of the measure- 

ments the low-level dew points remain constant and independent of altitude 

from fog formation until sunrise. When fog forms many hours before sun- 

rise, however, low-level dew point decreases at the same rate as tempera- 

ture, i.e., about 0.2OC hr -1 between fog formation and sunrise. This is 

illustrated in the data for 14 August 1970 presented in Figure 27, which 

was not included in the model. 
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The low-.level dew point begins to increase shortly after sunrise and 

within an hour is increasing,& a -near constant average rate of about 

4L 8OC .hr -1 . This rate ‘is maintained until fog dissipation. 

l Dew Deposition and Evaporation Rates 

.During the first few fog nights, we became intrigued with the he.avy 

deposition of dew on all vegetation on the valley floor. In an attempt to. 

obtain a.quantitative estimate of the amount of d’ew on the ground, we mounted 

a 0.. 1 m2 aluminum plate on a laboratory balance (0. i g least count), placed 

the balance on the ground, and weighed the plate at :half-hour intervals. 

Changes. in weight resulted from dew deposition on the plate. 

To reproduce the long-wave radiation characteristics of grass, we 

painted the plate black. This may not have been important since the surface 

of the plate was usually coated with dew. within an hour after being placed in 

the field; and the radiating surface of the plate, like that of the grass, was 

usually water. Even so,, the exact relationship between the dew depasition 

rates measured with this apparatus and deposition rates on the valley floor 

are unknown. Important differences probably include &he six-inch height 

of the plate above the ground and the ratio of surface area exposed to the 
atmosphere to unit area of valley floor. Grass on the airport ranged from 

four to six inches high; in the meadows, however, which constitute most of the 

valley .in the vicinity of the airport, weed height sometimes exceeded a foot. 

The surface area of vegetation in a meadow is given by Geiger (1965, 

Chapter V) as 20 to 40 times the area of the ground. ‘For the plate, of 

conrs.e, this ratio was very nearly two.. 

Another source of error was dripping of water from the edges of the 

plate when the amount of dew on the plate exceeded 15 g (150 g/m’). Since 

we never o.bsarved more than a single drop at a time, e-rrors due to dripping 

were probably quite small---certainly less than 10,$?&-and only occurred very 

late. in the measurement period. 
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Our measurements of dew deposition and evaporation rates must be 

interpreted with these uncertainties in mind. They are certainly indicative 

of the processes that occur during the life cycle of fog. Quantitatively, our 

measurements of total dew deposition through a night lie about midway in the 

range of measured values discussed by Geiger (1965, Chapters, II, VI). 

We suspect that they represent what happens on the valley floor to within a 

factor of about two. 

Typical dew deposition and evaporation data are presented in 

Figures 10, 11, and 12. In general, dew was first observed on the grass 

(and on the plate when it was out early enough) between 2030 and 2230 EDT 

on all clear nights with low wind speed. Deposition rate on the plate was 

consistently 25 -I 5 g m 
-2 -1 

hr until one hour before fog formation. Within 

the last hour before fog, deposition rates usually decreased to near zero. 

From that time until sunrise f one-half hour, the amount of dew remained 

constant. The total mass of dew deposited depended primarily on the time 

of fog formation and ranged from 100 g m 
-2 

, when fog formed at 0100 EDT, 

to 220 g m -2 when fog formed at 0640 EDT. Once evaporation began, the 

I average evaporation rate during the first half hour was 30 g m -2 hr-i and 

for the next two hours was 55 g m -i? hr-l . 

All available data were used to generate the dew cycle model 

presented in Figure 28. To construct this model, it was assumed that the 

fog formed at 0530 EDT when the dew mass was 200 g m -2 . Dew deposition 

rates as a function of time prior to fog formation were averaged to generate 

the curve prior to fog formation and evaporation rates after 0630 EDT were 

averaged to generate the curve for post-sunrise periods. Mass of dew was 
assumed to be constant in fog prior to sunrise. ‘This model is consistent with the 

temperature and dew point models presented earlier. 

l Wind Speed and Direction 

The primary measurements of wind speed and direction were made 

at the 3 and 17 m levels at the tower site using Packard Bell W/S 100 

(B series) wind systems. Factory performance characteristics for the 

anemometers in these systems are 0.25 m set -1 threshold speed and 
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0.1 m set -1 accuracy. Quoted characteristics for the wind vanes are 

0.35 m set -1 threshold and an accuracy of f3O. The vanes were field 

bdjusted.to fiO ,’ relative to true north using a transit, with a runway 

orientation as referenc.e. 

Secondary measurements of wind speed and direction were made with 

a Danforth wind system mounted on a 2 m mast on top of a hangar at the 

Harris Hill Airport (see Figure 1). The instrumentation was approximately 

250 m above the valley floor. Quoted characteristics for ,the system are 

1 m set -1 threshold and f0.5 m set -1 at f5O. All of the above accuracies 

apply only to the speed range of interest. 

The data were reduced to half-hour averages estimated by eye to 

the nearest half mile per hour (NO. 25 m set) and 22.5O. Typical results 

are presented in Figures 29 and 30. Dgta from all fogs may be summarized 

as follows: 

Low-level winds on fog nights were always light. Speeds never exceeded 

4 m set 
-1 at any of the three sites and averaged substantially less. Prtor 

to fog formation, these averages were 1 m set -1 at the 3 m height, 1.6 m set -1 

at 17 m and 2.2 m set 
-1 on Harris Hill. On the average, there is a slight 

speed increase in the val1e.y (approximately 1 m set 
-1 

) in the one -hour 

period centered on fog formation. Harris Hill data, on the other hand, show no 

change in average wind speed at that time. 

Wind directions at the 3 and 17 m levels frequently fluctuated by as 

much as 180’ prior to 0200 EDT. By that time, the WSW mountain wind 

usually became well-established and half-hour averages at both levels did 

not deviate by more than 22. 5O from that direction. On only one occasion 

did the ambient winds maintain a NNE val1e.y wind direction (up the valley) 

I until fog formation and on that occasion, a 180° wind shift occurred as fog 

formed. 

The wind direction on Harris Hill was controlled primarily ‘by the 

relative location.8 of Larger-scale systems, with occasional 90 to 180° 

shifts occurring gradually through the night. On the five fog nights for 

which good data are available, there was a minimum directional shear 
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of 45O between ambient and mountain wind before fog formation and 22.5O 

thereafter. Maximum directional shear was 150° under both circumstances. 

Maximum vector difference between the Harris Hill and the mountain wind 
-1 was 7 m set . 

l Vertical Wind Speed and Direction 

One of the unanticipated results from the Elmira investigations came 

from our measurement of vertical wind velocity. As with the surface and 

10 cm temperature measurements and dew weight measurements, these 

measurements wqre not planned before the field trip. When the lightweight 

propeller anemometer* (intended for spot measurements of drainage winds) 

was mounted in the vertical position at 17 m on the tower, up- and downdrafts 

of the order of 2 m set -1 were observed. A decision was then made to 

adapt an existing strip chart recorder to the instrument so that continuous 

data could be acquired for at least one fog. 

The single record obtained on 12 September 1970 provides a vivid 

description of the large-scale fluctuations (- 20-second period and greater) 

in vertical air velocity. The data acquired are in agreement with spot 

measurements made during other fog situations and are readily correlated 

with other events that have been shown to affect the fog life cycle. 

Segments of the record of vertical wind during the night are reproduced 

in Figure 31. The general behavior.is illustrated by the envelope of vertical 

speeds presented in Figure 32. To avoid overemphasis of isolated events, 

such peaks were neglected when drawing the general contour. 

Early in the evening, measurable vertical velocities occurred only 

intermittently. With minor exceptions, peak recorded speeds were less 

than 0.1 m set -1 in either direction. Measurable fluctuations occurred in 

bursts of 20- to 30-minute durations separated by calm periods of 5 to 

10 minutes. Peak velocities during these bursts of activity increased 

gradually through the night until about 0100 EDT when gusts exckeding 

0.25 m set -1 occurred frequently. 

*Gill model No. 27100 
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At 0120 EDT, a 6-minute long period of sustained updraft occurred 

averaging approximately 0.35 m set -1 and with a peak speed of 0.9 m set -1 . 

At the same time, the anemometers at:; m and 17 m indicated near calm 

(c 1 m set’*) horizontal winds. A similar’, though.less pronounced, period i 
of persistent downdraft occurred at 0240 EDT..- Similar events had been 

noted on previous nights before the recorder hali installed. 

The bursts of vertical wind fluctuations and the persistent up- and 

downdrafts are probably associated with a shifting pattern of the classical 

nocturnal circulation in a valley, in .which the down slope wind stimulates 

an upward return flow near the valley center before the mountain winds are / 
well-established (see Defant, 1951). 

Between 0200 and 0400 EDT, the fluctuation rate of vertical winds 

increased, but no significant changes in peak velocity occurred. Shortly 

after 0400, during the period of pre-fog surface temperature rise, peak 

vertical velocities decreased (with occasional exceptions) to less than 
-1 10 cm set . After reaching a minimum at 0430, no significant changes 

occurred until fog formed at the surface. 

A sharp increase in vertical gustiness occurred at 0500 EDT when 

the inversion broke and fog formed. Maximum pre-sunrise gustiness was 

noted at about 0600, when peak up and down motions exceeding 0.5 m set -1 

occurred at intervals of less than a minute. This condition persisted until 

shortly after sunrise when the frequency of the fluctuations began decreasing 

and occasional peak velocities exceeding 1 m set -1 in either direction began 

to occur. By the time of fog dissipation at 1000 EDT, typical maxima 

exceeded 1 m set -1 and occasional peaks of 2 m set -1 occurred. 

l Radiation 

Radiative flux measurements were obtained at half -hourly intervals 

on eleven fog days and seven no-fog days using a Suomi and Kuhn (1958) net 

radiometer at the i7 m level. In addition, radiative flux measurements as 

a function of altitude were &,cquired using a similar radiometer secured to a 

tethered balloon (kytoon). 
1 .i .: 

.. ., . . . 

I .  

59 



These radiation data were generally contaminated by the formation of 

dew on the polyethylene windows of the raiaometer. Fur this reason, much 

of the data cannot be interpreted quantitatively,? and are not presented here. 

However, clear evening tower measurements before dew formation and kytoon 

measurements before fog formation both show net upward fluxes of infrared 

radiation on the order of 0.1 cal cm -2 min-i . tn. good agreement with values 

in the literature. 

The radiation data contaminated by dew formation show a strong 

reversal in the direction of the net radiative flux about one hour after sun- 

rise, even in dense fogs, supporting the sunrise effects noted in the 

tempe’rature data, the dew point data, and the dew deposition data. 

While the radiation data acquired from kytoon flights were generally 

too noisy to analyze for radiative flux divergence, measurements obtained 

in the 12 September 1970 fog at 0630 show a large radiative flux divergence 

near the measured fog top at 120 m. This flux divergence corresponds to a 

radiative cooling rate of approximately 4OC hr -1 
in good agreement with 

values computed from the recently developed dynamic fog model. 

FOG MICROPHYSICS DATA 

l Drop-size Distributions 

Measurements of fog drop-size distribution were obtained using a 

modified Bausch and Lomb slide projector to expose gelatin-coated slides 

to a stream of foggy air. In operation, droplets in the air stream were 

impacted on the treated slides to leave permanent, well-defined “r,eplicas” 

that could be accurately measured under a microscope. Previous work 

had established that true droplet diameter is very nearly equal to one- 

half the diameter of the crater-like impressions left in the gelatin. 

The apparatus used at the tower site was constructed to permit 

control of exposure time from less than 0.1 set to periods of several 

minutes and selection of air stream velocity (by a speed control on the blower 

motor) between 10 and 70 m set 
-1 

. To provide for greater accuracy in 

applying collection efficiency corrections, air velocity was measured for 
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each exposure of the four millimeter wide slides. A similar drop sampler 

was installed in the nose of the Aztec to permit collection of drop samples 

aloft. 

Data reduction was performed manually from photomicrographs obtained 

with a phase contrast microscope. Where possible, a minimum of 20.0 drop- 

lets was measured for each distribution. In some cases with very low drop- 

let concentration, all replicas on the slide were measured directly through 

the microscope. A total of approximately 200 surface (3 ft level) drop- 

size distributions from eight fogs was analyzed. A similar number of 

samples obtained aloft was analyzed. 

Inspection of the drop-size distribution data obtained at Elmira 

suggests that droplets smaller than 1 urn radius could not be detected in 

the field even though smaller droplets can be detected in the laboratory. 

The principal known sources of error in these measurements are statistical 

in nature and imposed by the time required to measure larger numbers of 

replicas for each distribution. These errors are particularly important for 

small droplet sizes (< 3 urn radius) where the number of replicated droplets 

is limited by small collection efficiencies and consequently collection 

efficiency corrections are large (Langmuir and Blodgett, 1946). Similar 

problems occur for large drop sizes where natural concentrations are 

small. A second type of statistical error is due to the lack of “represen- 

tativene s s ” of the sample. A fog that occupies several tens of cubic 

kilometers is often characterized by a few tens of samples, each containing 

the droplets from five to ten cubic centimeters. 

While exposure time for a given sample is controllable, short 

exposure times (CO. 5 set) are not reproducible to within a factor of about 

three from slide to slide. Therefore, normalized drop-size distribution 

data can be obtained directly but it is not feasible to obtain direct measure- 

ments of drop concentration from the droplet samples. Drop concentrations 

were obtained by combining the normalized distributions obtained at the 

surface (3 ft) with simultaneous measurements of extinction coefficient 

obtained from the tower transmissometer (at the 4 ft level N 100 ft away) 

according to the following expression. 

61 



B transmissometer = 25rn g ~ i = o N(ri) ri2 

where N(r) is the normalized distribution and n is the concentration. 
* 

._ S..~ . 
In all cases in which drop samples were obtained from shallow ground 

fog, the transmissometer was above the fog top. The visibility within the 

ground fog was therefore always much less than the transmissometer 

indicated. The size distributions are therefore presented only in normalized 

form. Data for later periods in the fog life cycle are presented as absolute 

size distributions. 

If measured values for N(r) are used to compute n with typical 

visibilities measured when GF exceeds the transmissometer height (4 ft), 

values of n ranging from 100 to 200 cm -3 are obtained. These values are 

in good agreement with the model for radiation fog developed on this pro- 

gram (Jius to, 1964) which was based solely on published data. Measured 

N(r) is also in agreement with model size distributions. 

The surface drop-size distribution data obtained on fog nights between 

the time of formation of shallow ground fog (GF) and the time of the first 

visibility minimum after the formation of deep valley fog reveal a strikingly 

consistent behavior. Normally, two or three GF samples were taken randomly 

when GF was first observed. When deep fog began to form, samples were 

usually acquired at 5- to 15-minute intervals. On 2 September 1970, however, 

Attempts were made to obtain drop concentration data directly using a 
photographic technique similar to that used with the thermal diffusion cloud 
chamber. In this apparatus, a 70 u set long, 200 watt second pulse of light 
from a xenon flash tube was focused into a 2 mm wide ribbon in the camera 
field of view. The flash tube was triggered synchronously with the camera 
so that oint images were obtained’from light scattered by droplets in the 
0.2 cm P sampling volume. Difficulty in maintaining operation of the instru- 
ment in the saturated atmosphere prevented acquisition of extensive data. 
Furthermore, with the small sampling volume, the number of images obtained 
per sample was so small (1 to 5) that the data were statistically poor. The 
data available were in general agreement with concentration data obtained in 
the above-described manner. 

62 



it was recognized from the real time display of temperature variations with 

height and time that formation of deep fog was imminent and therefore a 

sequence of closely-spaced drop sample collections were initiated before 

substantial visibility changes were observable. As a res’ult, the most 

complete data onthe evolution of the drop-size distribution in valley fog 

were obtained on that date. The results are presented in Figure 33. I 

The drop-size distr,ibutions obtained prior to 0632 are characteristic 

of all distributions obtained in shallow ground fog (i. e., a fairly large number 

of very small droplets). At 0630, we observed the initial formation of fog 

aloft and began sampling at 2-minute intervals. Seven minutes later, the 

first decrease in surface visibility was noted and the sample interval was 

decreased to one minute or 30 seconds when possible. 

The distribution obtained at 0637:30 is characteristic of the distri- 

butions obtained at the time of the initial surface visibility decrease on all 

fog days. Data obtained between 0634 and 0637 show the transition from 

characteristic GF distributions to what we have named the “fog formation 

distribution”. On this date, the fog formation distribution persisted for 

only a few minutes. On one occasion, 26 August 1970, however, that 

distribution persisted for 45 minutes before dense fog formed. 

Data obtained between 0638:30 and 0650 illustrate the changes in 

drop-size distribution that occur between the initial visibility decrease and 

the first visibility minimum. These changes include (1) the disappearance of 

droplets smaller. than 3 or 4 pm radius, (2) the gradual increase in drop 

concentration to maximum, and (3) an increase in the maximum drop size 

to the largest values observed throughout the fog life cycle. 

The very small droplets reappear shortly after the first visibility 

minimum. From that time on, however, the behavior of the drop-size 

distribution with time is not always complet.ely consistent. In three of the 

eight fogs sampled, all distributions obtained at the surface after the first 

minimum were similar to those shown for 2 September 1970 between 0700 

and 0810. On three other occasions, surface drop-size distributions 

obtained after the first minimum were predominantly bimodal, with a maxi- 

mum near 2 to 3 urn radius and a second maximum in the 6 to 12 urn region. 
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Typical distributions ofthis kind.are illustrated in Figure 34 (for times 

after 0538). ‘On two*occasions, .distributions of both kinds seemed to occur 

randomly through-the fog life .cycle. 

The.re appear,ed to:be no consistent change in the shape of the surface 

drop-size distribution as-sociated with fog dissipation. As indicated in 

Figure 34, the concentration of droplets in each interval simply decre.ased 

as visibility improved.. These characteristics are further illustrated in 

Figures 35.and.36 which present data acquired on 22 August 1970 and 

12 September 19.70, 

0 Liqucd Water’ Content 

-Liquid water content data were acquired by integrating the absolute 

drop-s?-ze distribution (w = 4/3rrn FE 
i= 0 

N(ri)ri3) for each drop sample and 

* 
occasionally (5 to 10 times/fog) by direct measurement using a Gelman 

high volume sampler for mechanical collection of the water from 8 m3 

of fog. Cellulose filters were used in the Gelman so that liquid water was 

absorbed into the fibers. To minimize the error due to absorption of water 

vapor from the humid atmosphere by the cellulose, the filters were 

moistened by collection of water and vapor from 2 m 3 
of fog prior to the 

first weight measurement. The increase in weight after exposure to an 

additional 8 m3 of fog was used to determine LWC. Simultaneous measure - 

ments of LWC by the two methods are compared in Figure 37. In general, 

the two procedures agree to within f40 mg m -3 , which is quite good for 

measurement of LWC. Variability appears to be random and is undoubtedly 

associated in part with the fact that Gelman data were obtained from an 

average of 8 m3 of fog acquired over a ‘I-minute interval while the drop- 

.size distributions were acquired from a few cubic centimeters of fog 

collected essentially instantaneously. 

Complete summaries of the surface microphysics data, including drop 

concentration, liquid water content and mean, mean squared, and mean volume 

a( 
Gelman Model No. 16003 
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droplet radii with time are presented for the’three sample fogs in Figures 38, 

39, and 40.,. The tower site visibility trace is reprinted on each figure. Note 

that in Figure 40 (2 September 1970) the time scale has been expanded. 

These three figures taken together illustrate the pertinent features that 

are characteristic of the microphysical data throughout the life cyde of most 

Elmira valley fogs. These may be summarized as follows: 

i. Visibility decreases to a minimum during the first quarter of 

the life cycle and then increases somewhat. Through the middle half of the 

life cycle (the mature fog), visibility may remain nearly constant or undergo 

large fluctuations. The dissipation stage accounts for the last quarter of 

the life cycle. 

2. Droplet concentration and liquid water content increase to a 

maximum at the time of the first visibility minimum, fluctuate synchronously 

with visibility during the mature stage and decrease drastically during the 

dissipation stage. 

3. The mean, mean square, and mean volume radii of the drop-size 

distributions increase to a maximum approximately midway between the first 

observable visibility decrease and the first visibility minimum. The mean 

sizes then decrease slightly at the time of the first visibility minimum and 

retain near constant values through the mature stage 0 There appear to be no 

consistent changes associated with the dissipation stages. 

l Summary of Surface Microphysical Properties 
of the Fog 

Since the principal variations in fog microphysical characteristics 

at the surface occur during the first and last quarters of the life cycle regard- 

less of total fog duration, we attempted to model all microphysical data on a 

time scale defined by fractions of total fog duration. Averages of all available 

data from each fog were computed for each phase of the life cycle, with the 

first visibility minimum placed at t = 1/8 total life, a reasonably representative 

time. These data, together with the overall averages for all fogs are presented 

in Figures 41 and 42. The figures therefore summarize all surface micro- 

physical data obtained during the program with the exception of that for the 
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anomalous fog of 14 August 1970. The figures show that, with some exceptions 

in given fogs, the microphysical characteristics for individual fogs follow a 

reasonably consistent pattern. There is a wide variability from fog to fog 

in the absolute values of each of these properties. 

l Drop’-Size Distributions Aloft 

Because of flight restrictions limiting takeoff under zero-zero 

conditions to daylight hours, we were unable to obtain drop-size distribution 

data aloft at times prior to the first visibility minimum. The data acquired 

after daybreak, however, display a very consistent behavior with both 

height and time. This behavior is illustrated by the data acquired on 

22 August 1970 and 12 September 1970 presented in Figures 43 and 44. 

Since there are no visibility data aloft, all distributions are presented 

in normalized form. Note from the figures that the broadest drop-size 

distributions were observed at or near the surface at all post-daybreak 

times during the fog. During the earliest sounding, there was always a 

slight decrease in width of the distribution with altitude but as time 

progresses, the distributions became more and more peaked in the small 

size range. The exception to this rule occurred at 60 m on the last 

sounding on.22 August 1970, which was made on the final landing approach. 

This naturally was at the end of the dissipation stage when surface visibility 

exceeded one-half mile and the ceiling exceeded 60 m. Distributions 

that were more typical of surface distributions were occasionally obtained 

under these conditions. 

The general trend toward smaller drops aloft with increasing altitude 

and time is best illustrated by the plots of mean radius against altitude for 

successive soundings. That format is used in Figure 45 to present data 

acquired during four fogs that are representative of all fog types sampled 

(22 August and 12 September 1970 - persistent fogs; 13 August 1970 - 

patchy fogs; and 2 September‘ 1971 - short fogs that form after sunrise). 

The decrease in radius with increasing height is evident in all cases. 

Unfortunately, we never made enough soundings in fogs that formed after 

sunrise to determine if, in those fogs, radius aloft decreased with fog age. 

The comparison cannot be made in the 2 September 1970 data shown because 

of the large change in fog top height-- 45 m at 0735 EDT to 105 m at 0810 EDT. 
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l Cloud Nucleus Observations 

The CAL aircraft was used to obtain measurements of cloud conden- 

sation nuclei (CCN) at several selected altitudes prior to fog formation. 

Observations ‘of CCN at 0.3%S* were made at the surface and at altitudes of 

30, 90, 150, and 300 m. Flights normally were scheduled at midnight, 

0300 and also 0600 if fog had not already formed. 

In Figure 46, average cloud nucleus data are shown for the three 

flight times . Data obtained on 12 flights were used in tabulating the 
averages although fewer flights were possible at 0600 due to some early 

occurrences of fog. The data show that cloud nucleus concentration is 

highest near the ground and systematically decreases at higher altitudes in 

the valley. It is of some interest to note the abundance of cloud nuclei that 

are present even in the relatively clean rural environment near Elmira, 

New York. By comparison, measurements of average CCN in the vicinity 

of the industrial area of Buffalo, New York over a three-year period were 

nearly the same or about 1000 cm -3 at 0.37~s (Kocmond and Jiusto, 1968). 

No large differences in the CCN concentrations were found between the fog 

and no fog flights. Since the population of fog drops ,is always much smaller 

than the population of nuclei activated at 0. 37&S, this result is not surprising. 

We did not attempt to measure CCN in fog since there is reason to doubt the 

accuracy of such observations at high relative humidities (Saxena et al., 

1969; Fitzgerald, 1970). 

Possibly a more sensitive indicator of variations in the spectrum of 

“large” and “giant” nuclei that participate in fog formation can be found from 

the use of the haze chamber. This device, which received only limited use 

in the field this summer, is similar in most respects to the thermal diffusion 

cloud chamber, the only difference being that saturated solutions of KNO3 

are used in place of the upper and lower water reservoirs. It is possible, 

therefore, to produce controlled relative humidities in the range of 95%- 

loo%, thereby “activating” only the largest and most favorable cloud nuclei. 

The data in Figure 47 show results of observations of haze and cloud 

nuclei on 10 and 12 September 1970. The wide differences in haze nucleus 

concentration on these two dates is particularly noteworthy, especially since 
* 

S = supersaturation 
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the CCN count at 0.370,s was nearly the same on both days. On one of the days, 

12 September, .ground fog formed at about 0350 EDT and widespread dense 

fog developed by 0500 EDT. Prior to fog formation, the haze. concentration 

at 997’0 RH was about 40 cm -3 ; later, after fog had developed, the count fell 
-3 to<iCjcm . Still later in the period, after fog had persisted for several 

hours, no haze nuclei at all were observed in the chamber. These data sug- 

gest to us that many of the haze nuclei observed earlier in the day contri- 

buted to the formation and persistence of droplets in the dense fog that later 

developed at the airport. Unfortunately, no additional observations were 

made after fog dissipation. In future field programs, we intend to examine 

the haze nucleus concentration more carefully prior to, during, and after 

fog formation. The hope is that, for the first time, measurements can be 

made of the concentration of those nuclei that actually produce fog droplets. 
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CHAPTER III 

DISCUSSION .OF EX-PERIMENTAL RESULTS 

0 Fog Fo.rmaAion Processes at Elmira 

Numerous authors have concluded that .deep fog cannot be produced 

by cooling from below. Taylor (1917) concluded that turbulent transfe‘r ,df 

he,at to a cold surfa.ce could not form fog and explained some advection’fogs . 
on the basis of. mixing of warm and cold air masses. Several authons, for 

example Emmons and Montgomery (1947), Lyons et al (1962), concluded 

that fog was formed as a result of radiational cooling of the moist air. 

Rodhe (1962) emphasized the importance of turbulence in fog formation but 

showed how radiation also contributes. He suggested that two or more pro- 

cesses are usually involved in the formation of deep fog. 

The observations made in Elmira and the -computer. model experiments 

discussed in Chapter IV suggest that two or more processes are indeed in- 

volved with the formation of deep fog in the Chemung River Valley. The 

model and the data both s.uggest that the ground fog, ranging in depth from 

a few centimeters to a few meters, results from caoling of the air by 

diffusion of heat to the. cold -ground. The fact that the deep fog forms first 

aloft, with its .base at-least..30 ,to 60m above th-e surface, indicates that 

some process other than the-turbulent transport of heat to the surface is 

involved. 

Examination of the Elmira data, together with the model calculations 

and previously-published information, provides some insight into what these 

mechanisms may be. We can not describe these mechanisms in a pre- 

cise manner, however. 

Several authors who concluded that eddy diffusion could not produce 

sufficient cooling to cause-deep fog have already been referenced. In Our 

modeling experiments, we were unable to produce significant cooling. above 

a few tens of meters without assuming unreasonably high transfer co- 

efficients. In fact, those conditions which produced even slight cooling 

at the 1OOm level produced unrealistic low-level temperature profiles 

and never produced even a thin ground fog. The empirical data show, 

however, that the maximum cooling rates during the last six hours before 

fog formation occur in the vicinity of 100m. -Obviously, some other cooling 

mechanism must be responsible. 
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:It seems most reasonable that the temperature distribution leading 

to the”,formation of a valley fog is a result of the nocturnal valley circul- 

ations described by Defant (1951) on the‘.basis of the work of Wagner (1931, 

1932, .1938). Radiative coc,ling of the slopes stimulates. the downslope 

wind and its upward return flow in the center valley region as illustrated 

-*‘Figure ~48 . This proces.s, which begins within an hour after sunset 

(Geiger., 1965, Chapter VII) certainly contributes to the formation of the 

-deep nocturnal inversion. Several hours after sunset, the so-called 

mountain wind is established by-drainage of the cool air in the direction 

of the axis of,the valley. The- speed of the mountain wind is usually maxi- 

mum (2 to .4 m set-‘) at 1 evels ranging from 40 to 200 m. As the mountain 

wind is generated, the upward motion in the center of tl-e valley dies, but 

the downslope .wind persists as shown in Figure 49. During the late night 

hours , the downslope winds cease so that the mountain wind occupies thi 

entire valley and persists until after sunrise. 

It is attractive to speculate that the cooling at all levels within the 

valley until approximately three hours before fog formation results from 

the upward flow of cool surface air in the center valley region. At 

ab.out that time, .the mountain wind is initiated (see Geiger, 1965, Chapter 

VII) and retards the up.ward motion in the center valley region so that the 

cooling rate. at higher levels is decreased without significantly affecting 

-cooling at lower and mid levels. This is reasonable, since the downslope 

wind must provide the most cold air at the altitude of maximum mountain 

wind speeds. Qualitatively, therefore, the temperature-time relationships 

depicted in Figures 17 and 18 should result. 

If we postulate further that the dew point inversion extends to 

,significantly higher altitudes than the highest measurements made in Elmira 

(i. e., 17m), fog would form first aloft. Justification for this assumption 

.is presented in the next subsection. Further justification was found by 

Schuepp (1-945) in the only known simultaneous investigation of temperature 

.and moisture distributions and valley circulations. He reported that on the 

average, a tongue of moist air extended from the slopes to the center of the 

;Davos Valley in Switzerland at an ‘average height of 40m, the same altitude 
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RETURN FLOW 

Figure 48 NOCTURNAL CROSSVALLEY CIRCULATION (AFTER WAGNER) 



a b 

a. DDWNSLOPE WIND BEGINS SHORTLY AFTER SUNSET BEFORE 
UP-VALLEY MOUNTAIN WIND DIES: 

b. IN LATE EVENING UP-VALLEY WIND DIES AND ONLY DOWNSLOPE 
WIND AND RETURN FLOW AT CENTER OF VALLEY EXIST. 

c. RETURN FLOW AT CENTER OF VALLEY CEASES AND DOWN- 
VALLEY MOUNTAIN WIND BECOMES ESTABLISHED. 

d. LATE AT NIGHT THE DOWNSLOPE WIND CEASES AND THE 
DOWN-VALLEY MOUNTAIN WIND PERSISTS. 

Figure 49 THE NOCTURNAL MOUNTAIN WIND (AFTER DEFANT) 
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as the maxima of the valley wind.;for-the experimental pe.riod. Schuepp%. 

data are presented.in Geig:er @965; Chapter; VII) 

Once fpg has formed:aloft,, the propagation o.f>‘its bas.e downward is 

readily explained-by an extension of ‘the .ideas suggested-by:Fleagle: et a?. 

(1952) concerning changes in stability that occur.as a result- of ra&ative 

flux divergence at the fog- top. Assuming that na.heattransfer occurs at 

the fog boundary, Korb and Zdunkowski (1970) calculated the cooling due to 

the flux divergence of a 1’. 6 m thick fog layer with a LWC = 0.1 g/m3 to 

be approximately 9OC /hr ; Such a cooling r.ate tends to increase the stability 

at and immediately above the fog top and causes an unstable lapse to exist 

within the fog. In the case of fog aloft, the instability must eventually extend. 

beneath the fog base,. As -a result, -the cold foggy air mixes predominantly 

with the clear, almost saturated air beneath to cause saturated conditions to 

propagate downward. 

As mixing causes the supersaturated region to grow d0wnwar.d and 

fog forms at lower levels, condensation and evaporation that -accompany up and 

down motions must cause the lapse rate beneath the level of maximum radiation 

divergence to approach wet adiabatic. 

To summarize, therefore, we believe that the mannerin which deep 

valley fog forms is as follows: (1) Nocturnal radiation from the surface 

and subsequent turbulent heat transfer from air to ground which produces 

an initia 1 low- level temperature inversion stimulates. the downslope 

wind and the upward return flow near the valley center. During this perrod, 

dew deposition at the cold s.urface,creates the low level dewpoint inversion. 

The upward motion at the valley center carries the cool and some-what dry 

air aloft to cause the inversion to deepen. (2) Approximately three hours. 

before fog formation, the mountain wind.forms and restricts the-upward 

motion of air near the valley center. Cooling is therefore restricted to 

low and mid-levels of the valley; i. e., those levels in which fog will event- 

ually form . The continuing downslope wind, which provides cold air for 

the mountain wind, mixes with existing, warmer air at mid-levels in the 

valley and causes the cooling rate to,maximize in that region. Through 

this period, the dewpoint inversion persists. Temperature and dewpoint, 
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therefore, converge at mid-levels, and two to three hours’ after formation 

of the mountain wind, a thin layer of fog forms aloft. (3) The divergence 

of radiation in the fog simultaneously increases the stability at the fog top 

and promotes unstable’,conditions at the base of the thin fog layer aloft. 

Cool, foggy air therefore mixes with the clear air immediately below and 

causes supersaturation to propagate downward. This process continues 

until the fog base reaches the surface. 

When fog forms before sunrise, the surface warming that begins 

between one half and one hour before sunrise is a result of a decrease in 

net radiation from the surface caused by the fog forming aloft and the con- 

tinued conduction of heat from subsurface levels. The warming is repro- 

duced quite well by the computer model. 

When fog has not yet formed by sunrise, the surface warming and’ , 

accompanying dew evaporation is caused by the sun. The instability that 

results at low levels stimulates vertical motions which apparently cause 

the now moist air from low levels to mix with cooler air aloft and produce 

the supersaturation that results in fog formation. Apparently this process 

produces fog after sunrise only when nocturnal processes have produced a 

very delicately balanced set of atmospheric conditions in the valley, 

since post sunrise fog formation occurred at the airport on three occasions 

and formed in other parts of the valley but not at the airport on two other 

seemingly identical occasions. 

In reviewing the processes of fog formation, other ‘mechanisms 

were examined in attempts to explain the observed temperature changes 

that occur in the valley. The mechanisms include direct long-wave radiative 

flux divergence from the upper atmosphere, horizontal eddy diffusion to 

the valley walls, and advection of cool air over the vsilley from the adjacent 

hilltops. As indicated in the subsequent paragraphs, these mechanisms are 

either inadequate to explain the observed cooling rates or produce temper- 

ature distributions that are in conflict with the data. 

Kondo (1971) estimated the low-level cooling due to long-wave radi- 

ation under atmospheric conditions similar to those encountered in Elmira, 
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1. e., low wind speeds and high humidity at slightly warmer than freezing 

temperatures. His results indicate that long-wave radiation is indeed 
i - 

important to the heat budget in the lowest 100 m. Maximum cooling rates 

( 1.2,: C hr”) occur in the fowest meter of air and cooling rates at the 100 m 

level between midnight and 0600 are of the order of 0.2’ C hr -1 . The 

observed vertical distribution of cooling at Elmira is therefore reversed 

from that predicted on the basis of long-wave radiation. 

Order of magnitude calc,ulationsshow that to produce the observed 

cooling rates through horizontal eddy diffusion to the valley walls with the . . 
maximum observed temperature difference between hillside and center 

valley would require horizontal.diffusion coefficients at least two orders of 

magnitude greater than expected under the stable conditions that exist before 

fog formation. Hence, horizontal diffusion must be eliminated as a cooling 

mechanism. 

Advection of cold air from near the hilltops with the cross valley 

component of the ambient wind certainly contributes to cooling aloft. During . 
the early evening, this process may be viewed qualitatively as an eddy dif- 

fusion process in which the ambient wind is blowing across an extremely 

rough surface consisting of the Chemung’County hills. Such a mechanism 

could be responsible for the deep inversions (illustrated in Figures 15 and 

16) which form before midnight. 

The hypothesis that this cooling mechanism is responsible for fog 

formation breaks down upon consideration of the observed vertical’ temper- 

ature distribution after midnight and the correlation of that distribution 

with eventual fog height. Advection of cold air over the valley from the 

hilltops would cause maximum cooling near the hilltop levels or 200 to 300 m 
. 

above the valley base. The data show,. however, that the rate of cooling 

decreases at these levels several hours before fog formation, while the 

maximum cooling persists at or below 100 m in a manner that is correlated 

with eventual fog height. The data indicate, therefore, that the air in 

which the fog ‘will form becomes more and more isolated from the air 

advecting over the valley from-the’ hills in the hours immediately preceding 

fog formation. 
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0 The Role of Dew in the Fog Life Cycle 

The downward transport of moisture on clear nights and the for- 

mation of the nocturnal dew point inversion are attributed by numerous 

authors to the deposition of dew at the surface’.’ ’ See Wells (1838) and 

Geiger (1965, Chapter II). The first question he&ining to the role of dew 

in the fog life cycle is whether or not sufficient moisture is extracted by 

dew to produce the deep inversion postulated in the previous subsetition. 

Geiger presents empirical and theoretical data from a number of 

authors indicating that the nocturnal dew point inversion frequently extends 

to between 40 and 200 meters. The dew point inversions observed by 

Schuepp to extend to the 40 m level in a valley were already referenced. 

On the basis of past work, therefore, the assumption seems reasonable. 

Our numerical model predicts dew point inversions extending to 40 m only 

with exchange coefficients too large. to permit formation of fog. It must 

be recalled, however, that these same large exchange coefficients were 

required to produce temperature inversions extending to the same levels. 

Obviously, therefore, the numerical model does not simulate the valley situation 

adequately. 

Some direct evidence that the prefog dewpoint inversion extends to 

upper levels in Elmira may be derived by combining our low-level dew 

point and dew deposition data. 

If the observed dew is formed entirely as a result of extraction of 

water vapor in the atmosphere at the starting time and air mass changes 

do not account for observe? dew point changes, conservation of mass may 

be used to provide an order of magnitude estimate of the depth of the, dew .I. . . 
point inversion if it is assumed that the initial and final dew point profiles I 
are linear. The results of such a calculation based on the average data 

presented in Figures 26 and 28 and illustrated in Figure 50 indicate an 

inversion depth of 200 m. Even if 50% of the observed dew was formed 

from water vapor evaporated from the relatively, warm soil (beneath the 

cold upper surface of grass) during the observation period (see Geiger, 

1965, Chapter II) the depth of the inve,rsion is more than adequate to explain 
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inversion heights in the 30 to 60 m range. With the temperature distribu- 

tion approaching isothermal beneath these levels, fog forms first aloft. 

Between the time of fog formation and sunrise, it appears that dew 

serves no function-other than to provide a wet lower boundary for thevalley 

fog. After sunrise, the role of dew is most important. 

Shortly after sunrise, the surface temperature begins to increase 

and stimulate dew evaporation. During the second hour after sunrise, the 

temperature of the entire fog increases at an average. rate of 0.7” C hr -*. It 

is necessary, therefore, to provide water vapor to the fog at a rate of 

0.4 g m -3 hr-l simply to maintain saturation. During the same period, the 

average dew evaporation rate is 55 g m -2 hr-l , which is sufficient to main- 
tain saturation in a fog 140 m thick. The fog, therefore, persists. 

During the third hour after sunrise, the average rate of heating of 

the fog gradually increases to the point where dew evaporation can no 

longer maintain saturation. One should, therefore, expect fog dissipation 

to begin between 0830 and 0930 local time. The average observed time of 

the beginning of dissipation was very near 0900. 

From these simple quantitative observations, it is apparent that dew 

evaporation plays a major role in the persistence of valley fog after sunrise. 

As indicated above, natural fog dissipation begins when dew evap- 

oration is not adequate to maintain saturation at a rate consistent with the 

rate of temperature increase. It is readily apparent from even casual 

observations that dissipation occurs first at the surface and gradually pro- 

ceeds upward; a fact which undoubtedly has resulted in the term “fog lifting. ” 

For this sequence of events to occur, it is necessary for temperature to 

increase most rapidly at low levels to establish a lapse rate that is steeper 

than wet adiabatic beneath the persisting part of the fog. Under these con- 

ditions, the fog can be maintained aloft by cooling due to the upward air 

motions that occur at the time of fog dissipation (Figure 31). 

Our tower temperature data indicate a superadiabatic lapse in the 

lowest 17 meters through fog dissipation. Our aircraft temperature data 

are not sufficiently accurate to distinguish between a wet adiabatic and the 
slightly greater lapse needed to explain ‘fog lifting. ” 
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l Evolution of Drop-Size Distributions and Associated Implications . 

i The experimental data presented in Figures 33 and 35 show that the 

drop-size distributions that exist prior to formation of deep fog are consistently 

characterized by a mode, between 2 -and 4 pm radius and a maximum of about 

8 pm. Between 65 and 95% of the droplets in each distribution have radii 

larger than 2 pm, suggesting that the observed droplets were not simply 

enlarged nuclei; i. e., the nuclei were fully activated to droplet growth. 

As indicated in the data ,pre sentation, these droplets characterize the ground 

fog which is usually below the level of the transmissometer. For this 

reason, absolute concentration cannot be established. Calculations based 

on transmissometer data obtained when the beam passes through the ground 

fog indicate typical droplets concentrations of 100 to 200 cm -3 . 

Qur notes do not include comments indicating the presence of ground 

fog immediately preceding the formation of deep fog. Through the early 

morning hours, we often observed GF to dissipate and reform. We were 

usually distracted, however, from the ground fog by the formation of deep 

fog aloft and consequently do not know if the dense ground fog dissipates prior 

to deep fog formation. From the data presented in Figures 33 and 40 for 

the fog of 2 September, it appears that the ground fog droplets did persist 

&til deep fog formation but that drop concentration decreased before deep 

fog formed. 

Changes in drop concentration may be due to a combination of the 

low-level warming that precedes fog formation and to the vertical mixing 

that increases significantly during the formation period of deep fog. In any 

case, it is apparent that the supersaturation present in the ground fog is 

sufficient to support the presence of 60 to 200 droplets cm -3 and therefore 

to produce full activation of those concentrations of cloud nuclei. These 

concentrations are greater by a factor of 2 to 10 than droplet concentrations 

observed in the deep fog. If it is assumed that the activation spectrum of 

the nuclei in the region in which ground fog forms is the same as at higher 

altitudes in the valley, which is certainly reasonable, it follows that 

supersaturation at the time. of formation of ground fog is significantly 

greater than during formation of the deep fog. 
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This conclusion seems quite reasonable upon consideration of the 

temperature distribution through the two fqg depths. Figure 13 shows the 

mean temperature difference to be approximately 2.5OC between the 1 m and _. 
0.1 m levels during the sixPours before fog. As,equal air par’cels from ‘. 

each of these .levtils are mixed, the supersaturation developed (before vapor 

depletion by dropJet growth) is approximately 0.3%. Without vapor depletion, 

our cloud nuclei data (Figure 46) show that approximately 1000 nuclei cm -3 

would be activated. With the existing vapor Lo’sses, the supkrsaturation 

attained is Less.and apparently just sufficient to’produce the observed 100 
-3 to 200 droplets cm . 

The data presented in Figure 20, on the other hand, indicate a 

maximum temperature difference of about 1OC during the interval in which 

deep fog forms (At = one-half hour). Mixing of the two saturate.d air parcels 

at the temperature extremes would produce a supersaturation slightly 

exceeding 0.1% if such mixing could occur. Considering the extreme 

separation of these air parcels, it is obviously impossible for such mixing 

to occur without thorough dilution by air from other levels. . 

While the supersaturation at the time of ground fog formation exceeds 

that for deep fog, the drop-size distribution in groutid fog remains narrow 

throughout its life cycle. This is partially due to precipitation of the largest 

drops (e.g., a 5 pm radius droplet falls through the 1 m depth in approxi- 

mately five minutes) and is also associated with vapor depletion by the high 

concentration of existing droplets. Available water must be distributed over 

a higher concentration of nuclei so that no one droplet can grow rapidly. For 

obvious reasons, these mechanisms are not as effective in deep fog and the 

equilibrium drop-size distribution is significantly wider. 

The consistent pattern of the evolution of the drop-size distribution 

between the fog formation distribution and the first visibility minimum is 

intriguing. The fact that droplets small’er th?n 3 to 4 pm radius are never 

detected during this period in which the total concentration of droplets is 

increasing deserves ‘explanation. There appears to be an internal conflict 

in the data; i. e. , large droplets seem to form without going through the 

small droplet stage. 

95 



One hypothesis which was cdnsidered in attempting to explain these . 

observations is that the time required for growth of a n&w droplet from its 

critical radius (i.e., its radius at the maximum of the relevant Kohler 

curve) to 3 pm radius is so short and the concentration of drops in the 1 

to 3 pm size range at any time is so small that the probability of detection 

of one of these droplets with our sampling procedure is essentially zero. 

Excluding the fog of 15 August 1970, the average maximum rate of 

increase in drop concentration was 0.6 cm -3 -1 min . On 15 August 2970, 

the only case in which small drops were observed during the formation 

stage of deep fog, the rate was 2.6 drops cm -3 -1 min . Since droplets 

smaller than 3 pm radius are seldom observed, the hypothesis stipulates 

that the average concentration of droplets in this range must be smaller 
-‘3 thanO.l cm , which is the minimum concentration that is consistently 

detected (probably about 50% of the time) with our sampling procedures. 

If we consider the average concentration to be a time average, it is neces- 

sary that the fraction of any long-time interval during which a given cubic 

centimeter of air is occupied by at least one droplet smaller than 3 pm 

radius is substantially less than 0.1. Otherwise, droplets in this size 

range would be detected. This fraction of the time is given by the product 

of the production rate of droplets and the time T required for a newly 

activated droplet to grow to 3 pm radius. To go undetected, therefore: 

0.1 < 0.6 cm-’ minute x T minutes 

T < 0.17 minutes = 10 seconds 

We may now ask whether or not the supersaturation required to pro- 

duce such rapid growth can exist near the surface during fog formation. As 

a test case, we computed the growth at 0.3% supersaturation of drops that form 

on nuclei with different activation thresholds. The results are presented in 

Table III. 
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Table III 

Growth of ,Droplets at 0.3%S 

on:Nucl& of Different Activation Supersaturations 

‘Radius .of 
dry NaCl 
Par.ticle 

Activation 
Thre sho1.d 

Droplet Size at Indicated Time 

5 Seconds 10 Seconds 20 Seconds 

‘0.02‘0 pm 0.45% 0.12 pm 0.13 pm 0.14 pm 

0. 0’2’5 0.32 0.20 0.20 0.20 

.0..03.2 0.23 1.17 1.85 2.82 

0.040 0.16 1.31 1.95 2.90 

It is obvious from these values that the time required for droplet 

growth on nuclei with even significantly Lower activation thresholds than the 

existing supersaturation substantially exceeds the ten-second limit established 

above. .Even larger supersaturation would therefore be required to explain 

the observations on the basis of this hypothesis. Since the data presented in 

Figure 46 show that the concentration of nuclei activated at 0.3% is of the 
-3 order of 1000 cm , we know that such supersaturations do not exist in the 

region of the measurement. 

We must conclude from this analysis that the increase in concentration 

of droplets near the surface during deep fog formation is not due to activation 

,of new nuclei in the region where the observations are made. 

It’is conceivable under some fog conditions that sporadic supersaturations 

exceeding 0,30/o could be produced in small regions by mixing of the two near- 

saturate’d air parcels with different initial temperatures. The required 

tem,perature differences exceed those which were observed within the fog 

at Elmira, h0weve.r. 

A more realistic hypothesis for explaining the increase in droplet 

concentration at the surface during the fog formation stage is that the drop- 

lets are transported to the surface by turbulent diffusion from aloft. Under 

this assumption, the initial appearance of deep fog at the surface could occur 
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during a period in which the surface atmosphere is slightly unsaturated. 

With the fog existing aloft for times ranging from one-quarter to one hour 

before the first decrease in visibility, it is not necessari to postulate such 

rapid droplet growth and high supersaturations in order to cause most of 

the droplets to grow to radii exceeding 3.0 pm. The generation of new 

droplets can proceed continuously at higher altitudes. Upon being trapped 

in turbulent eddies, the droplets are carried downward. The associated 

warming promotes evaporation which tends to produce a wet adiabatic lapse. 

With the driving function for evaporation under a wet adiabatic lapse being 

a 0.02% supersaturation reduction per meter of descent, evaporation of 

newly formed small droplets can begin even before the eddy reaches the 

existing fog base. 

If this level is 20 m, for example, evaporation may proceed for 

periods exceeding 100 seconds at the typical downward velocities observed 

on 12 September 1970 (Figure 31B) during the fog formation period. With 

the lower atmosphere already slightly subsaturated, the extremely small 

droplets can disappear. 

The evaporation of droplets in the lower atmosphere plus the 

evaporation of dew from the warming surface must cause an increase in 

dew point at lower levels. (Such an increase is evident in the data presented 

in Figure 26. ) When the lower atmosphere becomes saturated, complete 

evaporation of small droplets no longer occurs and the small droplets 

reappear in the data,. 

From the bimodal drop-size distributions in some fogs, it appears 

that in some cases, the low Levels become supersaturated so that additional 

nuclei are activated, At the very low supersaturations that can exist in the 

presence of the high droplet concentration, the newly formed droplets grow 

very slowly so that it is not necessary to postulate continuous activation 

of nuclei to maintain the bimodal distribution. 
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CHAPTER IV 

NUMERICAL MODELING OF RADLA‘TION FOG 

INTRODUCTION 

l Brief Description of Model 

A numerical model has been developed to investigate the influences of 

various vertical transfer processes in shaping ‘the life cycle of radiation fogs, 

i.le. , fogs which result from the nocturnal cooling of the earth’s surface 

by infrared radiation. The model has a one-dimensional vertical grid 

system which extend,s from one meter below the earth’s surface to several 

hundred meters above the surface. In the atmosphere, starting from various 

initial conditions, the model predicts the temporal evolution of the vertical 

distributions of potential temperature, water vapor, and liquid water as 

determined by turbulent diffusiori. Prior to fog formation, radiative flux 

divergence in the atmosphere is neglected. In the soil, the model predicts 

the evolution of the vertical temperature distribution under the influence 

of heat conduction. 

The atmosphere and soil are coupled at the surface by maintaining 

continuity of the temperature and heat flux. During nocturnal cooling, the 

net upward flux of infrared radiation at the surface is balanced by an upward 

heat flux from the soil and a downward eddy flux of heat from the atmosphere. 

A no-flux boundary condition on water vapor content is maintained at the 

surface until the dew point is reached. Aft&r the surface is cooled to the 

dew point, the water vapor content at the surface is assumed to be saturated 

at the surface temperature, and dew is allowed to form. 

Fog is formed in the model by converting any water vapor content in 

excess of saturation into liquid water, after accounting for the latent heat 

of condensation released in the process. The model includes the influences 

of infrared absorption and radiation by fogj and fog drop sedimentation upon 

the development and maintenance of fog. 

The most difficult area in the model development has proven to be the 

necessity of providing atmosphere exchange coefficients for turbulent 

transfer of he&t and moisture over wide variations of height and stability. 
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Some success has been achieved in using exchange coefficients tihich are 

functions of friction-velocity, height, and the predicted local thermal 

stability . 

Numerical experi.ments with the fog model have been devoted-to 

delipeating the roles of the turbulent transfer of heat -and moisture and the. 

radiative transfer of heat in the formation and maintenance of fog. The 

model has been fairly successful in simulating the formation of radiation 

fogs (IO-40 meters in height) starting from conditions near sundown. It 

appears, however, that a considerable improvement on the realism of the 

modeling results might be effected by making the horizontal wind a prognostic 

variable of the model, and including a dependence of the exchange coefficients 

on the vertical wind shear. 

The model has not been successful in producing the deep fogs 

(100-150 meters in height) observed near Elmira, New York. It is believed 

that a two- or three-dimensional model will be required to provide .a 

satisfactory simulation of fog formation aloft and some other characteristic. 

features of the deep valley fogs. The present model, however, constitutes. 

a significant advance in the modeling of the processes which shape the Life 

cycle of fog and provides a sound basis for the development of-multi- 

dimensional models in the future. 

l Previous Work 

Although the development of the present model was based upon studies 

of fog, nocturnal cooling, turbulence, and radiative transfer too numerous 

to cite here, it is appropriate to mention certain studies which had a’ 

particularly important influence on the direction of the present modeling 

investigation. 

An investigation of the factors which contribute to the formation of 

fog is not complete without a careful study of the classical paper by 

Rodhe (1962) on “The effect of turbulence on fog formation. I’ Rodhe puts 

the thermodynamics of unsaturated and saturated processes on a common 

basis and delineates the key role in fog formation of the simultaneous turbulent 

transfer of heat and moisture. His analytical treatment of the formation of 

radiation fog, although based on a constant, height independent turbulent 

exchange coefficient, offers important insights in the physical processes involved. 
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Fisher and Caplan (1.963) demonstrated the feasibiIity, of simulating ,the 

formation.and dissipation- of radiation and advection fogs bymeans of a 

numerical’ model.. The.pres-ent model employs to a large extent the computational 

procedure .used by Fisher and Caplan to solve.their differential equations for 

the changes in potential temperature, water vapor content, and liquid water 

co$ent produced Ey,vertical turbulknt diffusion. Fisher and CapFan use 

var.&Le turbulent exchange coefficients which depend upon height and local 

stability, although in a somewhat crude manner. No radiation effects are 

included in the model. 

A study of the Fisher and Caplan results for radiation fogs shows 

that the principal shortcoming of their model Ts a predetermined temperature 

variation at the surface, which does not depend upon the computed variables. 

Also, their no-flux condition on moisture at the surface precludes the 

development of a dew point inversion as a result of dew deposition at the surface. 

McDonald (1963) proposed a “saturation adjustment” procedure in the 

numerical modeling of fog to treat condensation and evaporation in a thermo- 

dynamically sound manner. This procedure is used in the present model. 

Zdunkowski and Nielsen (1969) discuss a fairly sophisticated numerical 

model of radiation fog. Their model provides a careful, unified treatment of 

the atmosphere and the soil so that the surface temperature is a prognostic 

variable of the model. In the Zdunkowski and Nielsen model, the radiative 

flux divergences produced by water vapor and fog droplets are predicted 

through. unified radiative transfer .caLculations at every time step. Their 

turbulent exchange coefficients, on the other hand, are height dependent, 

but do not vary with time as a function of prognostic variables of the model. 

The surface boundary conditions on moisture employed by Zdunkowski 

and Nielsen conserve the total moisture content of the atmosphere. This 

again precludes the formation of a dew point inversion as a result of dew 

deposition of the. surface, a phenomena which can significantly delay the 

formation of fog (see Rodhe (1962) ). Nevertheless, the numerical results 

obtained’by Zdtinkowski and Nielsen appear sufficiently realistic to indicate 

the fundamental soundness of much of the model. As noted by the authors, 



the principal improvement necessary in-the development of a satisfactory 

radiation f’$ model is the internal generation of realistic exchange 

coefficients as a function of the prognostic variables of the model. 

The primary improvements attempted in the present numerical . 
fog model are internally generated exchange coefficients, dew formation 

at the surface, and inclusion of the effects of fog drop sedimentation. 

Only a crude treatment of radiative transfer is included. The numerical 

model is described in some detail in the next section entitled Numerical 

Model, and the results of numerical experiments with the model are 

discussed in the section entitled Results. 

NUMERICAL MODEL 

l Major Asstimptions 

The following assumptions are adopted in the numerical modeling 

study of radiation fog: 

a) The model is one-dimensional in the Z direction. All of the 

quantities are uniform in an X, Y plane. 

b) The turbulent exchange coefficients for heat, water vapor, and 

liquid water are equal. 

c) Prior to fog formation, radiative flux divergence in the atmos- 

phere is neglected. 

d) Supersaturated water vapor condenses instantaneously until 

saturation is achieved. Liquid water in an unsaturated region evaporates 

instantaneously until saturation is achieved or the liquid water is exhausted. 

l Equations 

List of Symbols 

In order to avoid lengthy explanations in the text, a list of the most 

important symbols employed will be given first: 
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temperature and potential temperature of air 

soil temperature 

water vapor mixing ratio 

saturation mixing ratio 

liquid water mixing ratio 

height coordinate 

kth vertical grid level 

time 

turbulent exchange coefficient for vertical transfer 

thermal diffusivity of soil 

density of air and soil 

specific heat of air at constant pressure and of soil 

net upward flux of infrared radiation 

Stefan- Boltzmann constant 

air pressure 

latent heat of condensation 

mean terminal velocity of fog drops 

ass absorption coefficient of fog for infrared radiation 
;zFg3) 

gravitational constant 

friction velocity 

Von Karman constant = 0.4 

denotes nth time step 

Major Equations 

The equations employed in the model for the time rate change of 

potential temperature B , water vapor mixing ratio r , liquid water 

mixing ratio U , and soil temperature G are: 

(4) 

(5) 
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(6) 

Saturation Adjustment 

The symbol C ,denotes a source function for condensation or 

evaporation. In the actual model, the finite difference-.approximations to 

Eqs. (4) through (7) are integrated for a time step, neglecting condensa.tion 

or evaporation. ’ Then, the saturation .adjustment procedure develo,ped by 

McDonald (1963) is applied to the new valueg of B , P , and .w . 

Taking into account the heating of the air by the release of latent heat of 

condensation, supersaturated water vapor at a grid Level is converted into 

liquid water until saturation is achieved. Similarly, taking into account the 

cooling of the .air, liquid wate.r at a grid level is evaporated into an unsaturated 

vapor until saturation is achieved or the liquid water is exhausted. 

Radiation 

The treatment of radiation in the present model is designed to cap-. 

ture the essence of physical processes while avoiding detailed radiative 

transfer calculations. Prior to fog. formation, the radiative fll-x divergence 

2Q3z in Eq. (4) is assumed to be everywhere zero. The net upward 

flux of infrared radiation at the surface R(O) is assumed to be a constant 

fraction p of the blackbody radiation at the surface temperature 7(O) i.e., 

R(0) = p o- T+m (8) 

The constant ,5 is typically taken to be . 25 (Sutton, 1953), signifying that 

the back radiation from atmosphere is assumed to be .75 of the full blackbody 

radiation from the surface. 
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After fog formation, a radiative flux divergence JR/Jz resulting 

from absorption and reradiation by the fog drops is introduced in Eq. (4). 

Representing the ,influence of fog drops by a single spectrally-ave.raged 

mass absorption coefficient k, and neglecting temperature gradients 

in the fog, the radiative flux at a height t in the ,fog is given by 

(9) 

where zt is the top of the fog and the effect of the angular dependence 

of the radiation field has been approximated by. using the diffusivity factor 

1.6 (Goody, 1964). Differentiating with respect to e , the radiative flux 

divergence at height z is given by 

In the model, the integrals over UY are evaluated numerically. 

In the Rayleigh limit r/3( < .c 1, the absorption cross section of 

water drops is proportional to f3 (Batten, 4959). The results of Stephens 

(1961) show that spectrally-averaged absorption cross sections for black- 

body radiation are virtually independent of temperature in the temperature 

range of interest to this study, and approximately proportional to r 3 for 

drop sizes up to r = 5 pm. Based upon these results of Stephens, a mean 

mass absorption coefficient k ur 7.5x 1u3cm$-~ was deduced and 

was applied in the model. 

This treatment of radiative transfer in a fog would not be a satis- 

factory approximation for a fog which has a significant number of drops 

with r > 10 pm, since the spectrally-averaged absorption cross sections 

for large drops are approximately proportional to r+ (Zdunkowski and 

Nielsen, 1969), and scattering becomes increasingly important in the radi- 

ative transfer as the drop sizes increase. It also should be noted that use 

of a spectrally-averaged absorption coefficient for blackbody radiation is 

less than accurate for the back radiation from the atmosphere which is 

deficient in water vapor window near il = 10 pm. In spite of these 
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shortcomings, this simple treatment provides a roughly quantitative simu- 

lation of the reduction of the net upward radiation at the surface by fog and 

of the accompanying radiative cooling of the fog. 

Exchange Coefficients 

The most difficult area in the development of the model proved to be 

providing realistic turbulent exchange coefficients for the vertical transfer 

of heat and moisture over wide ranges of height and stability. The 

preponderance of useful information in the literature on vertical turbulent 

transfer is restricted to a few tens of meters above. the surface in the 

“constant flux’! iayer . Furthermore, during low wind nocturnal inversion 

conditions, there is a paucity of observational data on turbulence and vertical 

transfer. 

Observational data from Elmira in mature fogs show a transition 

from unstable conditions near the surface to a capping inversion at fog top, 

even at night. To treat this situation, it appeared necessary that the 

turbulent exchange coefficients in the model should be a function of the 

local stability, not just the surface heat flux as in a constant flux layer. 

On the other hand, since the horizontal wind is not a prognostic variable 

in the present model, the friction velocity LC* = $7- z p , where Z is 

the shear stress, is treated as an input parameter in the model. 

It is assumed in the model that the exchange coefficients for heat, 

water vapor, and liquid water are equal. The functional dependence of the 

exchange coefficients upon local stability and height in the model is based 

upon the so-called KEYPS formula (Lumley and Panofsky, 1964) 

s”- y; s3 = 1, 

for the dependence of non-dimensional wind shear 

kz Btv s= -- 
u* de 

upon height z and the scaling length 
*3 

L= 
-lx. pc 7- : 

kYH 

(12) 

(13) 
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Here, j-I is the vertical heat flux and 7 is an empirical constant which 

is assumed to be 14 after Lumley and Panofsky. 

The KEYPS formula is an interpolation between free and forced 

convection and has been shown to be in reasonable agreement with obser- 

vations in the constant flux layer extending 10-100 meters above the sur- I 
face, where z and H are approximately constant. Assuming that the 

exchange coefficients for momentum and heat are equal and that H is the 

local heat flux, the KEYPS formula yields an explicit relationship for the 

exchange coefficients as a function of height and stability. In the present 

fog model, this relationship is applied throughout the entire depth of the 

model atmosphere. 

By definition, of the exchange coefficient for momentum K/77 , the 

non-dimensional wind shear can be written in the form 

ku’z s= -y- 
m 

(14) 

By definition of the exchange coefficient for heat Kh , the vertical heat 

flux is 

(15) 

Substituting this expression for // into Eq. (13), the scaling length 

can be written 

Now substituting Eq. (14) and Eq. (16) into KEYPS formula, Eq. (II), and 

asserting Kh = K, = K , we obtain 

Solving Eq. (17) for K , we obtain the expression 

(17) 



used in the model for K as a function of z , a&/22 , and the 

parameter a* . 

It can be verified that when 
I 7 7- dz 9 E lkz]‘(<.cZuf: Eq. (18) reduces 

to the expression for a neutral atmosphere 

K= ktc*z (19) 

In the limit r+ g (AZ)2 >> 2a*% occurring under stable conditions, 

it can be shown that 

f/Z 

independent of z . 

(20) 

In the limit - Y r gr q qiz)z>> AL*= occurring under unstable conditions, it 

can be shown that 

K= (21) 

independent of a* . 

To permit the incorporation of a dependence upon roughness length 

=o into the values of K near the surface, the constant k LC* zO is 

added to the computed values of K in the model. Since the K dependence 

for neutral conditions (Eq. (19)) prevails near the surface, regardless of 

stability, the K dependence near the surface now becomes K = ~u*(z+z~), 

in agreement with velocity profiles under neutral conditions (Lumley and 

Panofsky, 1964). 

In a cloud or fog, a moist adiabatic lapse rate is neutrally stable 

rather than a dry adiabatic lapse rate. Therefore, when K is evaluated 

in fog, J@/aZ in Eq. (18) is replaced in the model by the expression 

where fm is the local moist adiabatic lapse rate. In practice, the model 

fogs are sufficiently close to surface so that the ratio 6!!7 can be replaced 

by unity. 
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Terminal Velocity of Fog Drops 

In the model, the sedimentation of the fog drops is simulated through 

the mean terminal velocity Yt in Eq. (6). Preliminary experiments with 

the model in which L’ti was maintained at a constant 1.2 cm/set corresponding 

to a drop 10 pm in radius, showed that this value of V, served to 

unrealistically inhibit the upward development of .a model fog after formation 

at the surface. Consequently, V, in the mode.1 -was made -a .func,tion of the 

local liquid water mixing ratio through the assumption that the drop concen- 

tration remains constant. Under this assumption, V, k negligible until 

the liquid water content approaches values observed in well-dev.eloped fogs. 

The liquid water mixing ratio .~cr can be written 

where n/ is the number of drops per unit volume, 1* is the mean volume 

radius of the drop-size distribution, ,LY~ is the density of liquid water, 

and p is the air density. Eq. (23) can be solved for r and the result 

substituted in the Stokes relationship (Fletcher, 1966) 

“?t = 1.2 x ro‘r2(cgs um2.5) ( 24) 

for terminal velocity of water droplets under 20 pm in radius. The resulting 

expression is 

Yt = 5.3 x ,03 (5) 
z/3 

(25) 

where N -3 is number drops cm . 

Assuming a constant drop concentration A/= 50 CK3 , Eq. (25) 

reduces to the expression 

(26) 

employed in the model. For a liquid water mixing ratio ur = 7.22 x IO-# 

corresponding to liquid water content of approximately 0.159~~ -3 , typical 

of well-developed Elmira fogs, Eq. (26) yields l.$ -= ?a 0 cm/-z 
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l Boundary Conditions 

Upper and Lower Boundaries 

At the upper boundary of the vertical grid system in the atmosphere, 

the values of the potential temperature B , water vapor mixing ratio r , 

and the liquid water mixing ratio w are maintained equal to their initial values 

throughout a numerical experiment. The normal boundary condition on Uy 

is ur=O . At the lower boundary of the vertical grid system in the soil, 

the soil temperature Ts is maintained equal to its initial value 

throughout a numerical experiment. 

The Surface 

The earth’s surface ( z = 0 ) represents an internal boundary in the 

model between the atmosphere and the soil. The boundary conditions 

invoked in the model at this internal boundary in order to couple the atmos- 

phere and soil are continuity of temperature and heat flux. The former 

condition merely asserts ‘9: 7 = 5 at the surface (assumed to be at 

P= IOOOmb ). The latter condition can be written in the form 

(27) 

where the upward flux of heat from the soil equals the sum of the upward 

fluxes of sensible heat, latent heat, and infrared radiation in the atmosphere. 

Before the dew point is reached at the surface, a no-flux boundary 

condition c &!I 
1 Jz z=# = 0 on the water vapor mixing ratio r is main- 

tained at the surface. After the surface is cooled to the dew point, v at 

the surface is assumed to be saturated at the surface temperature, and dew 

is allowed to form. The boundary condition W= 0 is maintained on the 

liquid water mixing ratio at the surface under all conditions. 

Denoting the first grid level below the surface in the soil by - 1, the 

surface by 0, and first grid level above the surface in the atmosphere by + 1, 

Eq. (27) is represented in the model by the finite difference equation 
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where AZ,, and AZ+, are the grid distances from the surface and 

Kl + f/2 ) denotes K evaluated at a point midway between the surface 

and grid level t 1 in the atmosphere. 

Given values of G (- I), 6(+1), r(+f) and the integral over w , 

Eq. (28) can be solved for the surface temperature T(O) , provided 

some assumption is made about r(O) l The procedure adopted in the model 

is to assume that r(O)= r(f 1) , and solve Eq. (28) numerically for T(U) 

using the Newton-Raphson method. It should be noted that this can be accom- 

plished either when G (- i’), 6(+t) and r (+ 1) are known explicitly or 

through some known functional relationships between 3 (- 7) and T(O) , 

g (+ f) and 7(O) , and r(+ t) and r(O) . Both situations are 

encountered in the model. 

After solving for 7(O) , assuming r (0) = r(+f], a saturation adjust- 

ment procedure is carried out at the surface, which is similar in philosophy 

to that carried out in the model atmosphere after each time step. If 

r(o)= r(f)*rJ(T(O)) or dew is already present, T(O) and r(O) are adjusted 

to satisfy the boundary condition 

r&q = rs 0-m’) (29) 

while accounting for the adjustment of the surface heat balance as a result of 

the latent heat flux introduced into Eq. (28) by the procedure. 

l Computational Procedure 

Grid System 

In the vertical grid system employed in the model, the separation 

between adjacent grid levels expands upward from the surface in the atmos- 

phere and downward from the surface in the soil. The expanding grid system 



provides high resohrtion near the surface where the variables of the model 

change rapidly with height and removes the upper and lower boundaries 

fr.om the region of primary change, without requiring a prohibitively large 

number of grid Levels. 

In the soil, there are 16 grid levels. The grid separation expands 

downward by a factor of 1.5 per level from the highest level 1 mm below 

the surface to the lower boundary at 1.31 meters below the surface. In the 

atmoaphere, various expanding grids have been employed with the lowest 

level at 1 cm or 10 cm above the surface. At highest resolution, 50 atmos- 

pheric grid levels have been used, with the grid separation expanding by a 

factor of 1.2 per level from the lowest level 1 cm above the surface to the 

upper boundary 379 meters above the surface. 

Implicit Integration 

Since the grid system has very fine grid spacing near the surface, 

it was necessary to adopt an implicit method of solution of the partial 

differential equations of the model (Eqs. (4)-(7)) in order to obtain stable 

solutions using reasonably large time steps. The implicit method used in 

the model is almost identica1 to that employed successfully by Fisher 

and Caplan (1963) with a similar group of equations. The basic integration 

scheme for diffusion equations of the type 

is 

where n and nt7 denote values known at the end of successive time step: 

In Eq. (31), the Qn> and Kn & are known explicitly, while the Q,, , > 

are known only implicitly. 

Denoting three adjacent grid levels by k - 1 , k , and k+? , 

Eq. (31) can be placed in the general form, 

D,(k) = -A,(k)Q/,+,(k+~) + 8,(k) an+, (kt) - C, fk) Qn+,(k-t) (32) 
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where 4. , S’ , C ,. and, D are known quantities, from the previous 

time -step. There is an equation of. this type involving ,@A,,( k + f ), Q,, , (k); 

and. @A,, (k-5) for e&h vertical* grid level k: . . b. order to- determine 

the dJr) + , ‘8 ,, this sy.stem of si’multaneous linear equations must be solved. 

This i’s, the es.sence of implicit integration methods. 

The general method of solution adopted by Fisher and Kaplan-(1963) 

is bas,ed on the techniques of RGzht,myer (1,957) and will not be: discussed) in 

detail, he r-e. Basi’cally.,. it involves scanning the grid. system in one direction, 

ma-king use of the boundary valu-e at the start,. to. develop, linear r.elations 

between the $,+ f!s at adjacent grid levels,. e.g.., 

.Qn+, Ck) = E(kc)r;?,+, (-k+ ?I + F‘(k 1 (33) 

or 

a,.+, (k> = E’(k) Qn+, (k-j) + F’(k) (34) 

Then, making use of the boundary value at the other end of the grid system 

to start, the grid system is scanned in the opposite direction, successively 

determining all the a,,+, ‘s ._ 

Summary of Computational Sequence 

Suppose all the variables are known at the vertical grid levels LA 

and at the, surface Cr = 0) after the nth time step. The n+t time 

step of the integration is accomplished in the following manner: 

i. Starting from the invariant boundary values at the upper boundary 

of the grid system in the atmosphere, initiate- the implicit integration by 

pr,oceeding down the g-rid system to-first grid level above the surface (k = f) 

and computing the E-‘& J’s and F!k)‘s (see E’q. (34)) for 8 , r , 

and & . Starting from the:invariant boundary value at the lower boundary 

of the grid’ system in the soil, p.roceed up the grid system to the first grid’ 

le.vel below, the surface (k = -r) computing the E fk) !s and F(k) s (see 

Eq.. (33)) for g . * 
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2. Using the relationships, 

B(7) = E;,(l) * e(o) f- F..) 7) 

r(1) = E; (7) - r(O) f Fi ti) (35) 

G C-1) = EirSff) - <CO) + I=&?) 

and a(0) = TfO) = Xj CO), solve the surface heat balance relationship for 

770)and r(u) . 

3. Given B (0) = T(d) 3 P cd), and the boundary value ~ct.f~) = 0 , 

proceed up the atmospheric grid system, computing the new values of 8 , 

p , and ur using the previously determined relationships (Eq. (34)). 

If necessary, perform a saturated adjustment on the values of 0 , r , 

and ti to account for condensation or evaporation. Compute integrals 

over CJ for the computation of radiative flux divergence dR/ar . 

Given G (0) = 7(o), proceed down the soil grid system, computing new 

values of G using the previously determined relationships (Eq. (33)). 

4. If necessary, recompute 7(o) and R(O) based on the adjusted 

values of 8(j) and r(f) and the new value of integral over u in the 

expression for the net radiation flux at the surface R(o) . 

5. Proceed up the atmospheric grid system, computing new values 

of the turbulent exchange coefficient K and the radiative flux divergence 

Gwdz . The change in the amount of total dew deposition at the surface 

during the time step is computed by averaging the moisture fluxes at the 

surface at the beginning and end of the time step. This completes the 

time step. 

Timing 

The fog model was programmed in FORTRAN and run on CAL’s 

IBM 370/165 digital computer. It was found that 60 set time steps provided 

stable integrations during nocturnal cooling and initial fog formation. Based 

upon a 50 level atmospheric grid and a 16 level soil grid, a simulation of 

14 hours of meteorological time with the fog model using 60 set time steps 

requires 20 set of computer time on the 370. 



If a fog is formed in the model which has sufficient liquid water in a I 
unit column, the net radiative flux at surface R (0) is reduced as the fog 

top takes over as the effective radiating surface. Under these conditions, 

the surface temperature rises and the temperature stratification in the 

lower part of the fog becomes unstable. With time, the unstable region 

builds upward toward the top of the fog. It is found in this situation that the 

time step must be reduced to approximately 10 set to eliminate computational 

instabilities which develop in unstable regions of the fog. 

l Initial Conditions and Constants 

The fog model permits initialization with observed distributions of the 

four variables of the model. All numerical experiments which have been 

carried out with the model, however, have been based upon idealized initial 

distributions of the model variables. 

The initial distributions of potential temperature 8 have been either 

adiabatic ( B = const. ) or isothermal ( 7 = const.). The soil temperatures 

have always been initialized to be isothermal at the temperature of the first 

grid level above the surface in the atmosphere. 

The most common initial condition on water vapor mixing ratio 

was a uniform distribution with height. The liquid water mixing ratio 

was always initialized to zero, everywhere. 

These initial conditions are assumed to be approximately representative 

of conditions prevailing near sundown. The initialization proce.dure is com- 

pleted by solving the surface heat balance relation for the surface temperature 

T/a) and setting B(0) = T(a) = 7-10) 0 This results in an initial 7(o) 

that is 0. I to 0.2OC cooler than 5 (- 1) and 6 ($- j) and sets up the 

nocturnal cooling process. 

The soil parameters, K, =3x~0-~cm~/sec and h .s = pS cS KS 

z tdx /o’3cal. cm - Vc) -! *ec-t are treated as constants. They are typical of 

a soil of average thermal characteristics, say, a sandy clay (Johnson, 1960; 

Geiger, 1965). 



The roughness length to in the expression for the ;turbul.ent 

exchange coefficients K in the model was varied between 0 and 3 cm. 

The latter value of Z, corresponds to an average hetght of ‘the roughness 

elements of approximately 20 cm (Plate, 1971), thought to be rather typical 

of the Elmira field site. Variation of z0 between 0 and 3 cm had a profound 

effect on the predicted temperature stratification in the lowest 10 cm of the 

model atmosphere during nocturnal cooling, reducing the. temperature 

discontinuity between the surface and the first grid level at l’cm from 

0.4OC to less than 0. i°C. However, since the variation of z0 had no 

other important effect. upon the results of the numerical experiments with 

the fog model, it will not be discussed further. 

The friction velocity LL* was-the most important parameter to be 

varied in the numerical .experiments with the fog model, since it controls 

the degree of turbulent diXfusion in the model. For various initial conditions, 

u* was varied between 3 cm set -1 and 30 cm set -1 , to delineate the 

important factors which influence the formation and properties of radiation 

fog. 

RESULTS 

l General Characteristics of Model Fogs 

Fog formed by.this model is a relatively shallow type of radiation 

fog. Figure 54 shows typical behavior of fog top height with time; steady 

state fog top heights vary from six to forty meters. 

The model in its present form does not reproduce-deep fogs with 

tops around loo-150 m as frequently observed in Elmira, New York and 

reported for Handford, Washington (Fleagle et al., 1952). Formation of 

deep fogs at Elmira is related to the influence of the valley on atmospheric 

processes. The exact nature of the valley effect is not known, although the 

discussion in Chapter.m,provides considerable insight into this problem. 

The inability of the present. model ito form thes.e .deep fogs stems, in part, 

from its one-dimensional character and the assumption of a constant U * . 

In subsequent sections, these limitations of the model are discussed in 

some-what more detail, 
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As shown in Figure 51, the model fog top heights are similar to 

those observed for shallow radiational fogs; however, the liquid water content 

(LWC) is generally too large. Figure 52 shows the time variation of a 

characteristic LWC for the model fogs. In general, the LWC reaches a 
-3 steady value around 300-500 mg m , which is much larger than the 

-3 average 150 mg m observed at Elmira for the deep valley fog. The 

generation of larger LWC by the model is not completely understood but 

appears to be partly the result of a small initial dew point spread (i-2OC) 

near the fog top. If a larger dew point spread is used, fogs having the 

desired LWC can be simulated but they are too shallow compared to 

observed depths. One such simulation(case 1) in which the LWC was 
-3 approximately 150 mg m is discussed in detail below and illustrates the 

behavior of this model in forming fog. 

l Example of Model Fog Formation 

In the example to be discussed, the initial temperature conditions 

chosen for the simulation were an adiabatic lapse rate and a surface 

temperature of 288OK. The initial moisture distribution was represented by 

a mixing ratio invariant with height; for the mixing ratio value chosen, the 

dew point spread was 4OC at the surface and smaller aloft. A time-height 

profile of the fog produced during this simulation is shown in Figure 53. 

As shown, fog formed after eight hours of integration and then grew, at 

first rapidly and then more slowly, both in height and LWC until the 

integration was terminated. 

Tenperature Structure Prior to Fog Formation - 

The manner in which the temperature structure evolved during this 

simulation is shown in Figure 54. In the figure, the temperature profile 

is shown at two-hour intervals along with an indication of the fog top height. 

The characteristics of the temperature field are: cooling with time at the 

surface, a weak temperature gradient in the lowest meter, a strong 

temperature inversion near 10 m, and absence of cooling at 100 m. 
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In order to properly model the formation of fog, it appears important 

to produce the pre-fog temperature profile. It is felt that this feature is 

particularly important in simulating vertical growth of fog. Temperature 

profile data covering the life cycle of the type of radiation fog produced by 

this model do not exist in the readily available literature. Other data 

are available for situations somewhat similar to those under which radiation 

fog forms. For example, Best et al. (1952) shows the average temperature 

behavior in the lowest 100 m for 19 clear summer nights. Temperature and 

wind observations are available from Elmira for fog situations in 1970, but 

this fog type primarily builds down to, rather than up from, the ground. 

Since data such as these are the only type available, in the following discussion 

model temperature profiles are compared to these observations, and any 

important differences in generaL atmospheric conditions between the model 

and observations are described. 

We can assume that the valley temperature structure near Elmira, 

New York under light wind conditions prior to valley fog formation provides 

a good representation of the low-level temperature profile. The model 

results are, therefore, compared with data obtained in Elmira during the 

summer of 1970. From a review of the average Elmira temperature behavior 

at 10 cm. (see Figure 13), the cooling rate for the period midnight to 0300 

was found to be 0.67O~/hr, which is similar to values obtained from 

measurements by Best et al. (1952). For a comparable level and period 

in the model simulation, the cooling rate is 0.85OC/hr, showing fairly good 

agreement with observations in the field. 

In Figure 54, the average 0.1 m to 1 m temperature profile is shown 

for pre-fog conditions in Elmira. The data are matched to the model profile 

by plotting the observed 0. 1 m temperature at the value obtained in the model. 

The Elmira value of 2OC increase between 0.1 m and 1 m is comparable to 

that measured by Thornthwaite (1948- 52). Comparison of temperature pro- 

files shows that the model does not produce a large enough temperature 

inversion in the lowest meter. 
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The Elmira observations are representative of light wind and stable 

temperature conditions and hence weak turbulent transfer in the low levels. 

Within our treatment of turbulence, the U* = 5 cm se=-‘, which was used for 

the above simulation, apparently did not give weak enough turbulent transfer 

in the low levels. A profile from a simulation with LL* = 3 cm set-’ , 

shown in Figure 54, reproduces the strong gradient in the lowest meter. 

Observations from Elmira and other sources for the region above 

1 m are shown in Figure 55 and documented in Table IV. 

Table IV 

Description of Temperature Profiles 

Observed During Nocturnal Cooling 

Profile No. Source Local Time Type of Data 

1 Best et al. (1952) 0400 Average 

2 Elmira (1970) 0400 Average 

3 Fleagle et al. (1952) ? Single Case 

4 Funk (1962) 1800 Single Case 

5 Best et al. (1952) 2200 Single Case 

Comparison of these observations with the model simulation shows that the 

model produces too large a temperature gradient in the region around 10 m. 

In addition, both the Best et al. observations and Elmira observations show 

cooling during the night at 100 m, whereas the model shows none. 

With our model, the solution to obtaining a weaker temperature 

gradient through 10 m and cooling at 100 m was to increase U* . A 

simulation was made in which U* was set at 20 cm set -1 . The temperature 

profile produced in this simulation after eight hours is shown in Figure 55. 

As shown, the agreement is considerably better than in the previous simu- 

lation. In addition, at the end of eight hours with u* = 20 c~s~c;' the 100 m 

temperature cooled 2OC, whereas previously, there was no cooling. Not too 

surprisingly, attempts to form fog with tiff this large proved futile since 

the turbulent transfer of heat was very large. 

In summary, the following table illustrates model behavior as a 

function of ti* : 
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Table V 

Model Behavior as a Function of U* 

1 m to 100 m 
0.1 m to 1 m Temperature 100 m 

u *(cm see-‘) Fog Temperature Profile Profile Cooling 

3 Tenuous ground Yes No No 
fog 

5 Shallow radiation No No No 
fog 

20 None No Yes Yes 

With a low a*, the low-level temperature structure can be duplicated, 

but only a very shallow (1-2 m) tenuous fog (30 mg me3) is formed. With 

somewhat larger U* , a shallow fog with reasonable LWC can be formed, 

but none of the desired temperature structure can be reproduced. With 

still larger u. T the temperature gradient through 10 m is duplicated and 

cooling at 100 m is produced; but fog does not form for realistic initial 

moisture conditions. The conclusion to be drawn is that, with a non-time- 

varying u. *, the model is not capable of producing a fog with reasonable 

LWC and the desired pre-fog temperature structure. 

Based on this conclusion, it appears a simulation must start with a 

large U* so that cooling can be transported to high levels and the temperature 

profile can be established. Modeling results and observations (Figure 20) 

show that, once the shape of the temperature profile is established, further 

cooling produces a generally uniform decrease of temperature at all heights. 

After the temperature profile is established, then U* can be reduced so 

that cooling is concentrated at the lower levels and fog can form. This 

procedure might result in both fog formation and observed temperature 

behavior in a single simulation. By including the horizontal wind as an 

additional prognostic variable of the model and incorporating a dependence 

of the exchange coefficients upon vertical wind shear, such a variation in 

u* can be internally generated in the model (see Kondo, 1971). The 

diurnal cycle model developed by Kondo also indicates that radiative flux 

divergence due to water vapor, which is neglected in the present model, can 

also have a significant influence on the temperature profiles. 
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Temperature Structure after Fog Formation 

Observations show that after thick radiation fog forms, the surface 

temperature frequently rises and the pre-existing temperature inversion 

changes to a lapse condition (Figure 10; Fleagle et al., 1952). The 

mechanism controlling the surface temperature is most likely the balancing 

of the surface-long-wave radiation by that emanating from the fog, although 

the LWC and depth of the fog present when balance occurs is not completely 

known. However, using a LWC of the order of 0.1 g m -3 , a value character- 

istic of the Elmira fogs in which the surface temperature rises, the model 

results suggest a fog must reach a ‘depth of 40 m before the temperature 

rises at a rate approaching that observed. 

For purposes of demonstrating the capabilities of the numerical model, 

we would like to show the model temperature behavior after fog forms. 

Unfortunately, the model does not reproduce fog containing 0.1 g m -3 over 

40 meters. However, in the model, the surface net radiation is controlled 

by the integrated LWC in a column; so the net radiation behaves similarly 

whether LWC is small through a large depth or large through a small depth. 

Consequently, even though the LWC is unrealistically large in the simulation 

about to be discussed, the results illustrate the temperature behavior in the 

model when the surface net radiation is reduced to essentially zero. 

Figure 56 shows the temperature profile evolution for a simulation 

in which the net surface radiation is reduced to essentially zero after fog 

forms. The values of the net surface radiation are shown in the figure. 

As the radiation decreases, the temperature profile not only reverses from 

inversion to lapse, but the surface temperature increases by about 1.5OC. 

In the model, the surface temperature responds to the surface boundary 

condition of continuous heat flux across the surface. When the net radiation 

is reduced by the presence of fog, the surface temperature rises in order 

to satisfy the boundary condition. Thus, the model treatment of the net 

surface radiation and heat balance at the surface is sufficiently realistic to 

raise the surface temperature and to produce a lapse condition after fog 

forms, which is in qualitative agreement with observations. 
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l Exchange Coefficient as a Function of 
Thermal Stratification 

Even though K , the turbulent exchange coefficient, cannot change 

during a simulation due to changes in U* , it can vary as a function of the 

vertical temperature stratification. An example of this change in K is 

shown in Figure 57 for a simulation in which the temperature profile is 

initially isothermal, becomes inverted before fog formation, and then 

after fog formation, changes to a lapse condition up through 3 m. 

From an increase with height at 1 hr, K changes to a profile at 

4 hr which shows an increase up to 1 m, essentially constant from 1-10 m 

and then a slow increase to a maximum around 50 m. The most notable 

decrease in K in this three-hour period is between 10-100 m, where the 

temperature profile has developed a strong inversion. Between 4 and 8 hr, 

fog forms and the temperature actually decreases up through 3 m. The effect 

of this destabilization on K appears as an increase in K centered near 

2 m, which is also the location of the maximum value in K . 

No measurements exist on the /( behavior in fog at Elmira, but 

some interpretation is possible from the meager vertical wind data. In 

the case illustrated in Figures 31 and 32, a change to a vertical wind behavior 

characteristic of more turbulent conditions occurred when the fog formed and 

the low-level temperature profile became lapsed. However, comparison of the 

model results with these observations is of limited value since in 

Elmira the lapse condition extended through about 100 m and the wind 

increased when the turbulence increased. The former condition might cause 

the 17 m level to be influenced by eddies extending through a large depth and 

the latter condition suggests that the 17 m level might be influenced by 

increased turbulence associated with stronger wind. In any event, 

comparison of model results with observations shows that the model’s 

ability to increase K when the temperature structure changes from stable 

to unstable qualitatively duplicates a characteristic of fog occurrence. 

128 



1OOm 

10 m 

lm 

-. . ..- 

10’ 102 103 IO4 

K (cm*/sec) 

Figure 57 EVOLUTION OF TURBULENT EXCHANGE COEFFICIENT PROFILE FOR 
MODEL SIMULATION IN WHICH LOW-LEVEL TEMPERATURE PROFILE 
BECOMES LAPSED 

129 



l Model Behavior as a Function of 
Input Parameters 

In the model, the initial temperature profile can be either isothermal 

or adiabatic, both of which are reasonable. The adiabatic profile is 

characteristic of late afternoon, while isothermal structure occurs in the 

early evening (Best et al., 1952). The initial moisture distribution can be 

specified either as constant mixing ratio or constant dew point depression. 

The choice of appropriate initial moisture conditions for fog formation is 

an open question. Funk (1962) points out that “Stewart found a disappointingly 

irregular behavior of the detailed humidity structure. . . . . ” Radiosonde 

observations for Buffalo, New York on the evening prior to a recent fog 

occurrence indicate that constant mixing ratio is an appropriate initial 

condition. However, in view of the uncertainties surrounding this question, 
simulations were run for several combinations of initial profiles of 

temperature and moisture. 

Much of the experimental modeling work was concerned with fog 

formation as a function of the degree of turbulent diffusion. Analysis showed 

that after a short initial adjustment period, the Kk changed little with 

time before fog formation. Therefore, K values at t = 4 hr were 

chosen to label each experiment. A choice of K at the 10 m level, to 

provide a single K for each experiment, proved fortunate. The result 

of stratifying the experiments according to this X value is shown in Table VI. 

Table VI 

Stratification of Numerical Experiments by 

r( -Value at the 10 m Level 

KiO<10 cm 3 2 set-’ 3 2 KiO>10 cm set -1 

Fog Cases 

No Fog Cases 
12 

1 

1 

6 
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Twelve of thirteen fog cases had a 
3 2 

K value of <IO cm set -1 
. The 

one case with K > 103cm 2 set -’ hardly qualifies as a fog as the LWC 

appears only in the lowest 22 cm and only after 13. 5 hours of cooling. Six 

of seven no fog cases occurred with X > IO3 cm2 set -1 ; the one with 

K < 103cm2 -1 set had a large dew point depression from which the 

model could not form fog in a reasonable time (e.g., sunset to sunrise). 

This result based on K values suggested that fog would form in the 

model when the K value was small enough so that cooling would be con- 

fined to the lower levels. Under these conditions, the cooling at low levels 

would bring the temperature to the dew point which is also decreasing because 

of dew formation at the surface. 

As a test of this interpretation, the surface temperature change at 

2 and 4 hr into the integration was tabulated. Comparison of these 

temperature changes, between 0therwis.e similar situations, showed that, 

in general, fog cases possessed larger cooling than no fog cases. Thus, 

for the present model, a K,, value of IO3 cm 2 -1 set marks the boundary 

between fog-no fog formation for initial dew point spreads of 5OC or less. 

As pointed out earlier, the model is satisfactory in reproducing a 

temperature structure associated with pre-fog hours. However’, attempts 

to form a fog with the input parameters of this simulation were unsuccessful. 

In this simulation, K,, = 7 x 203cm2 set -1 , which does not produce fog in a 

reasonable time. 

l Dew Formation 

One of the advances of this model over previous ones is reduction of 

the atmospheric water vapor through dew formation at the ground. However, 

the formalism for producing dew in the model is highly simplified, and 

quantitative comparison of model dew formation rates with observed values 

is of questionable significance. On the other hand, presentation of the over- 

all behavior of the dew formation process in the model is appropriate. 

A single dew formation rate was computed for each simulation. For 

fog cases, the rate was computed for the period starting with initial dew 

formation and ending when fog formed. For no-fog simulations, the rate 



was computed over the period extending from initial dew formation to the end 

of the simulation, about ten hours. The values range from 5 g m -2 hr-l 

to 35 g m -2 hr-i, with the variation related primarily to U* values . 
* 

The higher dew formation rates are of the same magnitude as those 

measured in Elmira, New York. However, the accompanying u* values 

are representative of too large a turbulent transfer compared to the low 

transfer conditions under which the Elmira observations were made. 

Whether the source of this discrepancy lies in the modeling of dew formation 

or in the representativeness of the dew observations (See Chapter II) 

remains an open question. 

l Summary 

A one-dimensional numerical model of radiation fog was developed 

containing the following features: 

1. radiational cooling at the earth’s surface; 

2. continuity of temperature and heat flux across the soil- 

atmosphere boundary; 

3. Turbulent diffusion of heat, water vapor, and liquid water in 

the atmosphere, and molecular diffusion of heat in the soil; 

4. specification of turbulent exchange coefficients in terms of the 

friction velocity u”, height, and the predicted local stability; 

5. dew formation by water vapor diffusion to the earth’s surface, 

and consequent formation of a dew point inversion; 

6. reduction of the net upward infrared radiation at the earth’s 

surface by back radiation from the developed fog; 

7. radiative cooling of fog as a result of the radiative flux 

divergence produced by fog; 

8. gravitational sedimentation of fog drops; 

9. saturation adjustment - supersaturated water vapor condenses 

instantaneously until saturation is achieved. Liquid water in an unsaturated 

region evaporates instantaneously until saturation is achieved or the liquid 

water is exhausted. 

*(A u* value of 8 cm set -1 
separates the dew rates into two groups with 

values above and below 20 g m -2hr-l 
. 
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Previous numerical models for formation of radiation fog have had 

little difficulty forming fog because the water vapor content of the atmos- 

phere was held constant. In the present model, in which dew formation 

takes water vapor out of the atmosphere, correct modeling must be made 

of the complex process by which the temperature and dew point inversions 

are brought together. The present model can form fog under these 

conditions, but all the characteristics of a fog type cannot be duplicated in 

a single numerical experiment. 

Prior to model fog formation, observed temperature profiles and 

cooling-near 100 m were not duplicated. With a proper choice of U* , 

it was possible either to duplicate some features of the temperature field 

or form fog, but it was not possible to accomplish both tasks simultaneously. 
These results suggest that a considerable improvement in the model might 

be effected by making the horizontal wind a prognostic variable and including 

a dependence of the exchange coefficients upon vertical wind shear. 

The fogs generated by this model are radiation fogs with tops in the 

10-40 m range. The liquid water content for these fogs, however, was 

generally in the 300-500 mg m -3 range, which is larger than the 150 mg m -3 

frequently observed in natural fogs. An experiment in which the maximum 

liquid water values generated were 150 mg m -3 produced a fog top of only 

6 m. The inability of this model to form fogs of 10-40 m depth with 

reasonably low liquid waters is not completely understood. It appears that 

the problem lies in the inability of the model to predict deep fogs with realistic 

initial dew point spreads. 

The present model is able to reproduce two characteristic features. 

which occur after thick fog forms. The first involves a rise of surface 

temperature and conversion of the low-level temperature profile from 

inversion to unstable. In the model, this temperature behavior occurs when 

the fog becomes thick enough so that downward radiation emanating from 

the fog significantly reduces the net radiation leaving the earth’s surface. 

In addition, the model predicts an increase in the low-level, turbulent exchange 

coefficients at this time in agreement with observed increases in vertical wind 

fluctuations. 
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The numerical model of radiation fog which has been discussed here 

constitutes a considerable improvement over previous models in the treat- 

ment of dew formation and the turbulent exchange coefficients. The inability 

of this more complex model to duplicate certain observed fog properties 

has indicated problem areas that require further research in order to 

develop a numerical model for the prediction of radiation fog formation and 

dissipation. 
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